1
|
Alhadidy MM, Kanaan NM. Biochemical approaches to assess the impact of post-translational modifications on pathogenic tau conformations using recombinant protein. Biochem Soc Trans 2024; 52:301-318. [PMID: 38348781 PMCID: PMC10903483 DOI: 10.1042/bst20230596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
Tau protein is associated with many neurodegenerative disorders known as tauopathies. Aggregates of tau are thought of as a main contributor to neurodegeneration in these diseases. Increasingly, evidence points to earlier, soluble conformations of abnormally modified monomers and multimeric tau as toxic forms of tau. The biological processes driving tau from physiological species to pathogenic conformations remain poorly understood, but certain avenues are currently under investigation including the functional consequences of various pathological tau changes (e.g. mutations, post-translational modifications (PTMs), and protein-protein interactions). PTMs can regulate several aspects of tau biology such as proteasomal and autophagic clearance, solubility, and aggregation. Moreover, PTMs can contribute to the transition of tau from normal to pathogenic conformations. However, our understating of how PTMs specifically regulate the transition of tau into pathogenic conformations is partly impeded by the relative lack of structured frameworks to assess and quantify these conformations. In this review, we describe a set of approaches that includes several in vitro assays to determine the contribution of PTMs to tau's transition into known pathogenic conformations. The approaches begin with different methods to create recombinant tau proteins carrying specific PTMs followed by validation of the PTMs status. Then, we describe a set of biochemical and biophysical assays that assess the contribution of a given PTM to different tau conformations, including aggregation, oligomerization, exposure of the phosphatase-activating domain, and seeding. Together, these approaches can facilitate the advancement of our understanding of the relationships between PTMs and tau conformations.
Collapse
Affiliation(s)
- Mohammed M. Alhadidy
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| | - Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
2
|
Disclosing tau tangles using PET imaging: a pharmacological review of the radiotracers available in 2021. Acta Neurol Belg 2022; 122:263-272. [PMID: 34713414 DOI: 10.1007/s13760-021-01797-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022]
Abstract
Neurological symptoms depend on the topography of the lesions in the nervous system, hence the importance of brain imaging for neurologists. Neurological treatment, however, depends on the biological nature of the lesions. The development of radiotracers specific for the proteinopathies observed in neurodegenerative disorders is, therefore, crucially important for better understanding the relationships between the pathology and the clinical symptoms, as well as the efficacy of therapeutical interventions. The tau protein is involved in several neurodegenerative disorders, that can be distinguished both biologically and clinically as the type of tau isoforms and filaments observed in brain aggregates, and the brain regions affected differ between tauopathies. Over the past few years, several tracers have been developed for imaging tauopathies with positron emission tomography. The present review aims to compare the binding properties of these tracers, with a specific focus on how these properties might be relevant for neurologists using these biomarkers to characterize the pathology of patients presenting with clinical symptoms suspect of a neurodegenerative disorder.
Collapse
|
3
|
Ingham DJ, Blankenfeld BR, Chacko S, Perera C, Oakley BR, Gamblin TC. Fungally Derived Isoquinoline Demonstrates Inducer-Specific Tau Aggregation Inhibition. Biochemistry 2021; 60:1658-1669. [PMID: 34009955 PMCID: PMC8173610 DOI: 10.1021/acs.biochem.1c00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The microtubule-associated
protein tau promotes the stabilization
of the axonal cytoskeleton in neurons. In several neurodegenerative
diseases, such as Alzheimer’s disease, tau has been found to
dissociate from microtubules, leading to the formation of pathological
aggregates that display an amyloid fibril-like structure. Recent structural
studies have shown that the tau filaments isolated from different
neurodegenerative disorders have structurally distinct fibril cores
that are specific to the disease. These “strains” of
tau fibrils appear to propagate between neurons in a prion-like fashion
that maintains their initial template structure. In addition, the
strains isolated from diseased tissue appear to have structures that
are different from those made by the most commonly used in
vitro modeling inducer molecule, heparin. The structural
differences among strains in different diseases and in vitro-induced tau fibrils may contribute to recent failures in clinical
trials of compounds designed to target tau pathology. This study identifies
an isoquinoline compound (ANTC-15) isolated from the fungus Aspergillus nidulans that can both inhibit filaments induced
by arachidonic acid (ARA) and disassemble preformed ARA fibrils. When
compared to a tau aggregation inhibitor currently in clinical trials
(LMTX, LMTM, or TRx0237), ANTC-15 and LMTX were found to have opposing
inducer-specific activities against ARA and heparin in vitro-induced tau filaments. These findings may help explain the disappointing
results in translating potent preclinical inhibitor candidates to
successful clinical treatments.
Collapse
Affiliation(s)
- David J Ingham
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Bryce R Blankenfeld
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Shibin Chacko
- Synthetic Chemical Biology Core Facility, University of Kansas, Lawrence, Kansas 66047, United States
| | - Chamani Perera
- Synthetic Chemical Biology Core Facility, University of Kansas, Lawrence, Kansas 66047, United States
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Truman Christopher Gamblin
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States.,Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
4
|
Dominguez-Meijide A, Vasili E, Outeiro TF. Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sci 2020; 10:E858. [PMID: 33203009 PMCID: PMC7696562 DOI: 10.3390/brainsci10110858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
5
|
Kosevich MV, Boryak OA, Shelkovsky VS, Zobnina VG, Orlov VV. Раrаdохical Sесоndаrу Emissiоn Mаss Sресtrum оf thе Lеuсо Fоrm оf Mеthуlеnе Bluе. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934818140058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Longhena F, Spano P, Bellucci A. Targeting of Disordered Proteins by Small Molecules in Neurodegenerative Diseases. Handb Exp Pharmacol 2018; 245:85-110. [PMID: 28965171 DOI: 10.1007/164_2017_60] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The formation of protein aggregates and inclusions in the brain and spinal cord is a common neuropathological feature of a number of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and many others. These are commonly referred as neurodegenerative proteinopathies or protein-misfolding diseases. The main characteristic of protein aggregates in these disorders is the fact that they are enriched in amyloid fibrils. Since protein aggregation is considered to play a central role for the onset of neurodegenerative proteinopathies, research is ongoing to develop strategies aimed at preventing or removing protein aggregation in the brain of affected patients. Numerous studies have shown that small molecule-based approaches may be potentially the most promising for halting protein aggregation in neurodegenerative diseases. Indeed, several of these compounds have been found to interact with intrinsically disordered proteins and promote their clearing in experimental models. This notwithstanding, at present small molecule inhibitors still awaits achievements for clinical translation. Hopefully, if we determine whether the formation of insoluble inclusions is effectively neurotoxic and find a valid biomarker to assess their protein aggregation-inhibitory activity in the human central nervous system, the use of small molecule inhibitors will be considered as a cure for neurodegenerative protein-misfolding diseases.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy
| | - PierFranco Spano
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy.
- Laboratory of Personalized and Preventive Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
7
|
Fisher E, Zhao Y, Richardson R, Janik M, Buell AK, Aigbirhio FI, Tóth G. Detection and Characterization of Small Molecule Interactions with Fibrillar Protein Aggregates Using Microscale Thermophoresis. ACS Chem Neurosci 2017. [PMID: 28640595 DOI: 10.1021/acschemneuro.7b00228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neurodegenerative diseases such as Parkinson's and Alzheimer's disease share the pathological hallmark of fibrillar protein aggregates. The specific detection of these protein aggregates by positron emission tomography (PET) in the patient brain can yield valuable information for diagnosis and disease progression. However, the identification of novel small compounds that bind fibrillar protein aggregates has been a challenge. In this study, microscale thermophoresis (MST) was applied to assess the binding affinity of known small molecule ligands of α-synuclein fibrils, which were also tested in parallel in a thioflavin T fluorescence competition assay for further validation. In addition, a MST assay was also developed for the detection of the interaction between a variety of small molecules and tau fibrils. The results of this study demonstrate that MST is a powerful and practical methodology to quantify interactions between small molecules and protein fibrillar aggregates, which suggests that it can be applied for the identification and development of PET radioligands and potentially of therapeutic candidates for protein misfolding diseases.
Collapse
Affiliation(s)
- Emily Fisher
- Molecular Imaging
Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of
Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Yanyan Zhao
- Molecular Imaging
Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of
Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Robert Richardson
- Molecular Imaging
Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of
Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Malgorzata Janik
- MTA-TTK-NAP
B, Drug Discovery Research Group, Neurodegenerative Diseases, Institute
of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1051, Hungary
| | - Alexander K. Buell
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Franklin I. Aigbirhio
- Molecular Imaging
Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of
Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Gergely Tóth
- Molecular Imaging
Chemistry Laboratory, Wolfson Brain Imaging Centre, Department of
Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, U.K
- MTA-TTK-NAP
B, Drug Discovery Research Group, Neurodegenerative Diseases, Institute
of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest 1051, Hungary
- Cantabio Pharmaceuticals Inc., Sunnyvale, California 94085, United States
| |
Collapse
|
8
|
Nizynski B, Dzwolak W, Nieznanski K. Amyloidogenesis of Tau protein. Protein Sci 2017; 26:2126-2150. [PMID: 28833749 DOI: 10.1002/pro.3275] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022]
Abstract
The role of microtubule-associated protein Tau in neurodegeneration has been extensively investigated since the discovery of Tau amyloid aggregates in the brains of patients with Alzheimer's disease (AD). The process of formation of amyloid fibrils is known as amyloidogenesis and attracts much attention as a potential target in the prevention and treatment of neurodegenerative conditions linked to protein aggregation. Cerebral deposition of amyloid aggregates of Tau is observed not only in AD but also in numerous other tauopathies and prion diseases. Amyloidogenesis of intrinsically unstructured monomers of Tau can be triggered by mutations in the Tau gene, post-translational modifications, or interactions with polyanionic molecules and aggregation-prone proteins/peptides. The self-assembly of amyloid fibrils of Tau shares a number of characteristic features with amyloidogenesis of other proteins involved in neurodegenerative diseases. For example, in vitro experiments have demonstrated that the nucleation phase, which is the rate-limiting stage of Tau amyloidogenesis, is shortened in the presence of fragmented preformed Tau fibrils acting as aggregation templates ("seeds"). Accordingly, Tau aggregates released by tauopathy-affected neurons can spread the neurodegenerative process in the brain through a prion-like mechanism, originally described for the pathogenic form of prion protein. Moreover, Tau has been shown to form amyloid strains-structurally diverse self-propagating aggregates of potentially various pathological effects, resembling in this respect prion strains. Here, we review the current literature on Tau aggregation and discuss mechanisms of propagation of Tau amyloid in the light of the prion-like paradigm.
Collapse
Affiliation(s)
- Bartosz Nizynski
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 2C Banacha Str, Warsaw, 02-097, Poland.,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Krzysztof Nieznanski
- Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| |
Collapse
|
9
|
Seripa D, Solfrizzi V, Imbimbo BP, Daniele A, Santamato A, Lozupone M, Zuliani G, Greco A, Logroscino G, Panza F. Tau-directed approaches for the treatment of Alzheimer's disease: focus on leuco-methylthioninium. Expert Rev Neurother 2016; 16:259-77. [PMID: 26822031 DOI: 10.1586/14737175.2016.1140039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small molecular weight compounds able to inhibit formation of tau oligomers and fibrils have already been tested for Alzheimer's disease (AD) treatment. The most advanced tau aggregation inhibitor (TAI) is methylthioninium (MT), a drug existing in equilibrium between a reduced (leuco-methylthioninium) and oxidized form (MT(+)). MT chloride (also known as methylene blue) was investigated in a 24-week Phase II study in 321 mild-to-moderate AD patients at the doses of 69, 138, and 228 mg/day. This trial failed to show significant positive effects of MT in the overall patient population. The dose of 138 mg/day showed potential benefits on cognitive performance of moderately affected patients and cerebral blood flow in mildly affected patients. A follow-up compound (TRx0237) claimed to be more bioavailable and less toxic than MT, is now being developed. Phase III clinical trials on this novel TAI in AD and in the behavioral variant of frontotemporal dementia are underway.
Collapse
Affiliation(s)
- Davide Seripa
- a Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo , Foggia , Italy
| | - Vincenzo Solfrizzi
- b Geriatric Medicine-Memory Unit and Rare Disease Centre , University of Bari Aldo Moro , Bari , Italy
| | - Bruno P Imbimbo
- c Research & Development Department , Chiesi Farmaceutici , Parma , Italy
| | - Antonio Daniele
- d Institute of Neurology , Catholic University of Sacred Heart , Rome , Italy
| | - Andrea Santamato
- e Physical Medicine and Rehabilitation Section, 'OORR' Hospital , University of Foggia , Foggia , Italy
| | - Madia Lozupone
- f Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy
| | - Giovanni Zuliani
- g Department of Medical Science, Section of Internal and Cardiopulmonary Medicine , University of Ferrara
| | - Antonio Greco
- a Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo , Foggia , Italy
| | - Giancarlo Logroscino
- f Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy.,h Department of Clinical Research in Neurology , University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico' , Tricase , Lecce , Italy
| | - Francesco Panza
- a Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo , Foggia , Italy.,f Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs , University of Bari Aldo Moro , Bari , Italy.,h Department of Clinical Research in Neurology , University of Bari Aldo Moro, 'Pia Fondazione Cardinale G. Panico' , Tricase , Lecce , Italy
| |
Collapse
|
10
|
Chang KH, Chen IC, Lin HY, Chen HC, Lin CH, Lin TH, Weng YT, Chao CY, Wu YR, Lin JY, Lee-Chen GJ, Chen CM. The aqueous extract of Glycyrrhiza inflata can upregulate unfolded protein response-mediated chaperones to reduce tau misfolding in cell models of Alzheimer's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:885-96. [PMID: 27013866 PMCID: PMC4778784 DOI: 10.2147/dddt.s96454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Alzheimer’s disease (AD) and several neurodegenerative disorders known as tauopathies are characterized by misfolding and aggregation of tau protein. Although several studies have suggested the potential of traditional Chinese medicine (TCM) as treatment for neurodegenerative diseases, the role of TCM in treating AD and tauopathies have not been well explored. Materials and methods Tau protein was coupled to the DsRed fluorophore by fusing a pro-aggregation mutant of repeat domain of tau (ΔK280 tauRD) with DsRed. The ΔK280 tauRD-DsRed fusion gene was then used to generate Tet-On 293 and SH-SY5Y cell clones as platforms to test the efficacy of 39 aqueous extracts of TCM in reducing tau misfolding and in neuroprotection. Results Seven TCM extracts demonstrated a significant reduction in tau misfolding and reactive oxidative species with low cytotoxicity in the ΔK280 tauRD-DsRed 293 cell model. Glycyrrhiza inflata and Panax ginseng also demonstrated the potential to improve neurite outgrowth in the ΔK280 tauRD-DsRed SH-SY5Y neuronal cell model. G. inflata further rescued the upregulation of ERN2 (pro-apoptotic) and downregulation of unfolded-protein-response-mediated chaperones ERP44, DNAJC3, and SERP1 in ΔK280 tauRD-DsRed 293 cells. Conclusion This in vitro study provides evidence that G. inflata may be a novel therapeutic for AD and tauopathies. Future applications of G. inflata on animal models of AD and tauopathies are warranted to corroborate its effect of reducing misfolding and potential disease modification.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan, Republic of China
| | - I-Cheng Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan, Republic of China
| | - Hsuan-Yuan Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Hsuan-Chiang Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan, Republic of China
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Yu-Ting Weng
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan, Republic of China
| | - Chih-Ying Chao
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan, Republic of China
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan, Republic of China
| | - Jung-Yaw Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan, Republic of China
| |
Collapse
|
11
|
The Role of MAPT in Neurodegenerative Diseases: Genetics, Mechanisms and Therapy. Mol Neurobiol 2015; 53:4893-904. [PMID: 26363795 DOI: 10.1007/s12035-015-9415-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022]
Abstract
Microtubule-associated protein tau (MAPT) is a gene responsible for encoding tau protein, which is tightly implicated in keeping the function of microtubules and axonal transport. Hyperphosphorylated tau protein participates in the formation of neurofibrillary tangles (NFTs), which characterize many neurodegenerative disorders termed tauopathies. Genome-wide association studies (GWAS) have demonstrated numerous single nucleotide polymorphisms (SNPs) located in MAPT associated with various neurodegenerative diseases. Thus, it has been presumed that MAPT plays a crucial role in pathogenesis of neurodegeneration via affecting the structure and function of tau. Here, we review the advanced studies to summarize the biochemical properties of MAPT and its encoded protein, as well as the genetics and epigenetics of MAPT in neurodegeneration. Finally, given the potential mechanisms of MAPT to neurodegeneration pathogenesis, targeting MAPT and tau might present significant treatments of MAPT mutation-related neurodegeneration. Affirmatively, the identification of MAPT is extremely beneficial for improving our understanding of the pathogenesis of various neurodegenerative diseases and developing the mechanism-based therapies.
Collapse
|
12
|
Hochgräfe K, Sydow A, Matenia D, Cadinu D, Könen S, Petrova O, Pickhardt M, Goll P, Morellini F, Mandelkow E, Mandelkow EM. Preventive methylene blue treatment preserves cognition in mice expressing full-length pro-aggregant human Tau. Acta Neuropathol Commun 2015; 3:25. [PMID: 25958115 PMCID: PMC4425867 DOI: 10.1186/s40478-015-0204-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/21/2022] Open
Abstract
Introduction Neurofibrillary tangles (NFT) composed of Tau are hallmarks of neurodegeneration in Alzheimer disease. Transgenic mice expressing full-length pro-aggregant human Tau (2N4R Tau-ΔK280, termed TauΔK) or its repeat domain (TauRD-ΔK280, TauRDΔK) develop a progressive Tau pathology with missorting, phosphorylation, aggregation of Tau, loss of synapses and functional deficits. Whereas TauRDΔK assembles into NFT concomitant with neuronal death, TauΔK accumulates into Tau pretangles without overt neuronal loss. Both forms cause a comparable cognitive decline (with onset at 10mo and 12mo, respectively), which is rescued upon switch-off of transgene expression. Since methylene blue (MB) is able to inhibit Tau aggregation in vitro, we investigated whether MB can prevent or rescue Tau-induced cognitive impairments in our mouse models. Both types of mice received MB orally using different preventive and therapeutic treatment protocols, initiated either before or after disease onset. The cognitive status of the mice was assessed by behavior tasks (open field, Morris water maze) to determine the most successful conditions for therapeutic intervention. Results Preventive and therapeutic MB application failed to avert or recover learning and memory deficits of TauRDΔK mice. Similarly, therapeutic MB treatment initiated after onset of cognitive impairments was ineffective in TauΔK mice. In contrast, preventive MB application starting before onset of functional deficits preserved cognition of TauΔK mice. Beside improved learning and memory, MB-treated TauΔK mice showed a strong decrease of insoluble Tau, a reduction of conformationally changed (MC1) and phosphorylated Tau species (AT180, PHF1) as well as an upregulation of protein degradation systems (autophagy and proteasome). This argues for additional pleiotropic effects of MB beyond its properties as Tau aggregation inhibitor. Conclusions Our data support the use of Tau aggregation inhibitors as potential drugs for the treatment of AD and other tauopathies and highlights the need for preventive treatment before onset of cognitive impairments. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0204-4) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Abstract
BACKGROUND Dementia with Lewy body (DLB) is considered to be the second most common form of neurodegenerative disorders after Alzheimer's disease (AD), affecting as many as 100,000 people in the UK and up to 1.3 million in the USA. However, nearly half of patients with DLB remain undiagnosed thus depriving many of them from an early and adequate treatment of their distressing symptoms. Accurate and early diagnosis of DLB is important for both patients and their caregivers, since the neuropsychiatric symptoms require specific management. METHODS In the current study, we review the most recent developments in the field of molecular nuclear imaging to diagnose DLB. RESULTS The review addresses, the neurotransmitter based (dopaminergic, cholinergic, and glutamatergic) nuclear imaging techniques, role of the autonomic dysfunction and its visualization in DLB with myocardial sympathetic imaging and vesicular catecholamine uptake, as well as the use of amyloid polypeptides and glial markers as molecular imaging probes in the clinical diagnosis of DLB. CONCLUSIONS Most of the above nuclear imaging methods are restricted to highly specialized clinical centers, and thus not applicable to a large number of patients requiring dementia (e.g. DLB) diagnosis in routine clinical setting. Validating them against more readily accessible peripheral biomarkers, e.g. CSF and blood biomarkers linked to the DLB process, may facilitate their use in wider clinical settings.
Collapse
|
14
|
Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, Lam C, Liang Q, Liu C, Mocharla VP, Mu F, Sinha A, Su H, Szardenings AK, Walsh JC, Wang E, Yu C, Zhang W, Zhao T, Kolb HC. [18
F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease. Alzheimers Dement 2013; 9:666-76. [DOI: 10.1016/j.jalz.2012.11.008] [Citation(s) in RCA: 448] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/26/2012] [Accepted: 11/21/2012] [Indexed: 11/15/2022]
Affiliation(s)
- Chun-Fang Xia
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Janna Arteaga
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Gang Chen
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Umesh Gangadharmath
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Luis F. Gomez
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Dhanalakshmi Kasi
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Chung Lam
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Qianwa Liang
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Changhui Liu
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Vani P. Mocharla
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Fanrong Mu
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Anjana Sinha
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Helen Su
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - A. Katrin Szardenings
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Joseph C. Walsh
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Eric Wang
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Chul Yu
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Wei Zhang
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Tieming Zhao
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| | - Hartmuth C. Kolb
- Molecular Imaging Biomarker Research; Siemens Medical Solution USA, Inc; Culver City CA USA
| |
Collapse
|
15
|
Hickey JL, Donnelly PS. Diagnostic imaging of Alzheimer's disease with copper and technetium complexes. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Ultrastructural alterations of Alzheimer's disease paired helical filaments by grape seed-derived polyphenols. Neurobiol Aging 2010; 33:1427-39. [PMID: 21196065 DOI: 10.1016/j.neurobiolaging.2010.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/20/2010] [Accepted: 11/02/2010] [Indexed: 11/21/2022]
Abstract
Abnormal folding of the microtubule-associated protein tau leads to aggregation of tau into paired helical filaments (PHFs) and neurofibrillary tangles, the major hallmark of Alzheimer's disease (AD). We have recently shown that grape seed polyphenol extract (GSPE) reduces tau pathology in the TMHT mouse model of tauopathy (Wang et al., 2010). In the present studies we assessed the impact of GSPE exposure on the ultrastructure of PHFs isolated from Alzheimer's disease brain. Transmission electron microscopy revealed that GSPE induced profound dose- and time-dependent alterations in the morphology of PHFs with partial disintegration of filaments. Filaments showed ∼2-fold enlargement in width and displayed numerous protrusions and splayed ends consistent with unfolding of tau and diminished structural stability. In addition, GSPE induced a reduction in immunogold labeling with antibodies against the C-terminal half (12E8, PHF-1) and the middle region of tau (AT8, Tau5, pSer214 tau, and AT180) but not the C-terminal end (Tau46). In comparison, labeling of N-terminus (Alz50) was enhanced. It is unlikely that alterations in immunogold labeling were due to biochemical alterations, e.g., protein phosphatase or proteolytic activities potentially stimulated by GSPE, because western blotting studies have shown the preservation of full length polypeptides of tau and their phospho-epitopes in GSPE-treated samples. The GSPE mechanism may include a noncovalent interaction of polyphenols with proline residues in the proline-rich domain of tau, with Pin1 sites at P213 and P232 most seriously affected as judged by suppression of labeling. Collectively, our results suggest that GSPE has a significant potential for therapeutic development by neutralizing phospho-epitopes and disrupting fibrillary conformation leading to disintegration of PHFs.
Collapse
|
17
|
Vernon AC, Ballard C, Modo M. Neuroimaging for Lewy body disease: is the in vivo molecular imaging of α-synuclein neuropathology required and feasible? ACTA ACUST UNITED AC 2010; 65:28-55. [PMID: 20685363 DOI: 10.1016/j.brainresrev.2010.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation is a neuropathological hallmark of many neurodegenerative diseases including Parkinson's disease (PD), Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB), collectively termed the α-synucleinopathies. Substantial advances in clinical criteria and neuroimaging technology over the last 20 years have allowed great strides in the detection and differential diagnosis of these disorders. Nevertheless, it is clear that whilst the array of different imaging modalities in clinical use allow for a robust diagnosis of α-synucleinopathy in comparison to healthy subjects, there is no clear diagnostic imaging marker that affords a reliable differential diagnosis between the different forms of Lewy body disease (LBD) or that could facilitate tracking of disease progression. This has led to a call for a biomarker based on the pathological hallmarks of these diseases, namely α-synuclein-positive Lewy bodies (LBs). This potentially may be advantageous in terms of early disease detection, but may also be leveraged into a potential marker of disease progression. We here aim to firstly review the current status of neuroimaging biomarkers in PD and related synucleinopathies. Secondly, we outline the rationale behind α-synuclein imaging as a potential novel biomarker as well as the potential benefits and limitations of this approach. Thirdly, we attempt to illustrate the likely technical hurdles to be overcome to permit successful in vivo imaging of α-synuclein pathology in the diseased brain. Our overriding aim is to provide a framework for discussion of how to address this major unmet clinical need.
Collapse
Affiliation(s)
- Anthony C Vernon
- Kings College London, Institute of Psychiatry, Department of Neuroscience, Denmark Hill campus, London, UK
| | | | | |
Collapse
|
18
|
Kim K, Jo C, Easwaramoorthi S, Sung J, Kim DH, Churchill DG. Crystallographic, Photophysical, NMR Spectroscopic and Reactivity Manifestations of the “8-Heteroaryl Effect” in 4,4-Difluoro-8-(C4H3X)-4-bora-3a,4a-diaza-s-indacene (X = O, S, Se) (BODIPY) Systems. Inorg Chem 2010; 49:4881-94. [DOI: 10.1021/ic902467h] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kibong Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Changbum Jo
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Shanmugam Easwaramoorthi
- Spectroscopy Laboratory for FPIES, Department of Chemistry, Yonsei University, Shinchon-dong 134, Seodaemoon-gu Seoul, 120-749, Republic of Korea
| | - Jooyoung Sung
- Spectroscopy Laboratory for FPIES, Department of Chemistry, Yonsei University, Shinchon-dong 134, Seodaemoon-gu Seoul, 120-749, Republic of Korea
| | - Dong Ho Kim
- Spectroscopy Laboratory for FPIES, Department of Chemistry, Yonsei University, Shinchon-dong 134, Seodaemoon-gu Seoul, 120-749, Republic of Korea
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| |
Collapse
|