1
|
Pei J, Natarajan PM, Umapathy VR, Swamikannu B, Sivaraman NM, Krishnasamy L, Palanisamy CP. Advancements in the Synthesis and Functionalization of Zinc Oxide-Based Nanomaterials for Enhanced Oral Cancer Therapy. Molecules 2024; 29:2706. [PMID: 38893579 PMCID: PMC11173400 DOI: 10.3390/molecules29112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The fabrication of zinc oxide-based nanomaterials (including natural and synthetic polymers like sulfated polysaccharide, chitosan, and polymethyl methacrylate) has potential to improve oral cancer treatment strategies. This comprehensive review explores the diverse synthesis methods employed to fabricate zinc oxide nanomaterials tailored for oral cancer applications. Several synthesis processes, particularly sol-gel, hydrothermal, and chemical vapor deposition approaches, are thoroughly studied, highlighting their advantages and limitations. The review also examines how synthesis parameters, such as precursor selection, the reaction temperature, and growth conditions, influence both the physicochemical attributes and biological efficacy of the resulting nanomaterials. Furthermore, recent advancements in surface functionalization and modification strategies targeted at improving the targeting specificity and pharmaceutical effectiveness of zinc oxide-based nanomaterials in oral cancer therapy are elucidated. Additionally, the review provides insights into the existing issues and prospective views in the field, emphasizing the need for further research to optimize synthesis methodologies and elucidate the mechanisms underlying the efficacy of zinc oxide-based nanoparticles in oral cancer therapy.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China;
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, d Centre of Medical and Bio-Allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai 600 107, Tamil Nadu, India;
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, Tamil Nadu, India;
| | - Nandini Manickam Sivaraman
- Department of Microbiology, Sree Balaji Medical College and Hospital, Bharath University, Chennai 600 100, Tamil Nadu, India; (N.M.S.); (L.K.)
| | - Lakshmi Krishnasamy
- Department of Microbiology, Sree Balaji Medical College and Hospital, Bharath University, Chennai 600 100, Tamil Nadu, India; (N.M.S.); (L.K.)
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Rahman M, Afzal O, Ullah SNM, Alshahrani MY, Alkhathami AG, Altamimi ASA, Almujri SS, Almalki WH, Shorog EM, Alossaimi MA, Mandal AK, abdulrahman A, Sahoo A. Nanomedicine-Based Drug-Targeting in Breast Cancer: Pharmacokinetics, Clinical Progress, and Challenges. ACS OMEGA 2023; 8:48625-48649. [PMID: 38162753 PMCID: PMC10753706 DOI: 10.1021/acsomega.3c07345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
Breast cancer (BC) is a malignant neoplasm that begins in the breast tissue. After skin cancer, BC is the second most common type of cancer in women. At the end of 2040, the number of newly diagnosed BC cases is projected to increase by over 40%, reaching approximately 3 million worldwide annually. The hormonal and chemotherapeutic approaches based on conventional formulations have inappropriate therapeutic effects and suboptimal pharmacokinetic responses with nonspecific targeting actions. To overcome such issues, the use of nanomedicines, including liposomes, nanoparticles, micelles, hybrid nanoparticles, etc., has gained wider attention in the treatment of BC. Smaller dimensional nanomedicine (especially 50-200 nm) exhibited improved in vivo effectiveness, such as better tissue penetration and more effective tumor suppression through enhanced retention and permeation, as well as active targeting of the drug. Additionally, nanotechnology, which further extended and developed theranostic nanomedicine by incorporating diagnostic and imaging agents in one platform, has been applied to BC. Furthermore, hybrid and theranostic nanomedicine has also been explored for gene delivery as anticancer therapeutics in BC. Moreover, the nanocarriers' size, shape, surface charge, chemical compositions, and surface area play an important role in the nanocarriers' stability, cellular absorption, cytotoxicity, cellular uptake, and toxicity. Additionally, nanomedicine clinical translation for managing BC remains a slow process. However, a few cases are being used clinically, and their progress with the current challenges is addressed in this Review. Therefore, this Review extensively discusses recent advancements in nanomedicine and its clinical challenges in BC.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shehla Nasar Mir
Najib Ullah
- Phyto
Pharmaceuticals Research Lab, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences and Research, Jamia
Hamdard University, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Mohammad Y. Alshahrani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Ali G. Alkhathami
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | | | - Salem Salman Almujri
- Department
of Pharmacology, College of Pharmacy, King
Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Waleed H Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Eman M. Shorog
- Department
of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Manal A Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ashok Kumar Mandal
- Department
of Pharmacology, Faculty of Medicine, University
Malaya, Kuala Lumpur 50603, Malaysia
| | - Alhamyani abdulrahman
- Pharmaceuticals
Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Ankit Sahoo
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
3
|
Assawapanumat W, Roobsoong W, Chotivanich K, Sattabongkot J, Kampaengtip A, Sungkarat W, Sunintaboon P, Nasongkla N. In Vitro Tracking of Sporozoites via Fluorescence Imaging and MRI Using Multifunctional Micelles. ACS APPLIED BIO MATERIALS 2023; 6:5324-5332. [PMID: 38039355 DOI: 10.1021/acsabm.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Early detection could increase the treatment efficiency and prevent the recurrence of malaria disease. To track and detect malarial sporozoites, novel drug delivery systems have been explored for their ability to target these parasites specifically. This study investigates the potential of micelles to track Plasmodium vivax by targeting the Plasmodium vivax hexose transporter using glucose-based interactions. In vitro experiments were conducted using glucose/SPIO/Nile red (targeted) micelles and methoxy/SPIO/Nile red (nontargeted) micelles, revealing that the targeted micelles exhibited stronger fluorescence with the sporozoites and higher relative R2* values compared to the nontargeted micelles. These findings suggest that targeted micelles could be used for the specific detection of Plasmodium sporozoites using fluorescence imaging and MRI techniques, offering a promising approach for efficient malaria parasite detection.
Collapse
Affiliation(s)
- Wirat Assawapanumat
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Adun Kampaengtip
- Department of Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Witaya Sungkarat
- Department of Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Norased Nasongkla
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Magnetic Nanomaterials Mediate Electromagnetic Stimulations of Nerves for Applications in Stem Cell and Cancer Treatments. J Funct Biomater 2023; 14:jfb14020058. [PMID: 36826857 PMCID: PMC9960824 DOI: 10.3390/jfb14020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Although some progress has been made in the treatment of cancer, challenges remain. In recent years, advancements in nanotechnology and stem cell therapy have provided new approaches for use in regenerative medicine and cancer treatment. Among them, magnetic nanomaterials have attracted widespread attention in the field of regenerative medicine and cancer; this is because they have high levels of safety and low levels of invasibility, promote stem cell differentiation, and affect biological nerve signals. In contrast to pure magnetic stimulation, magnetic nanomaterials can act as amplifiers of an applied electromagnetic field in vivo, and by generating different effects (thermal, electrical, magnetic, mechanical, etc.), the corresponding ion channels are activated, thus enabling the modulation of neuronal activity with higher levels of precision and local modulation. In this review, first, we focused on the relationship between biological nerve signals and stem cell differentiation, and tumor development. In addition, the effects of magnetic nanomaterials on biological neural signals and the tumor environment were discussed. Finally, we introduced the application of magnetic-nanomaterial-mediated electromagnetic stimulation in regenerative medicine and its potential in the field of cancer therapy.
Collapse
|
5
|
Pandey R, Yang FS, Sivasankaran VP, Lo YL, Wu YT, Chang CY, Chiu CC, Liao ZX, Wang LF. Comparing the Variants of Iron Oxide Nanoparticle-Mediated Delivery of miRNA34a for Efficiency in Silencing of PD-L1 Genes in Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15010215. [PMID: 36678844 PMCID: PMC9865708 DOI: 10.3390/pharmaceutics15010215] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The blocking of programmed death-ligand 1 (PD-L1) in tumor cells represents a powerful strategy in cancer immunotherapy. Using viral vectors to deliver the cargo for inactivating the PD-L1 gene could be associated with host cell genotoxicity and concomitant immune attack. To develop an alternative safe gene delivery method, we designed a unique combination for miRNA34a delivery using a transgene carrier in the form of iron oxide magnetic nanoparticles (IONPs) via magnetofection to downregulate PD-L1 expression in cancer cells. We synthesized IONPs of multiple shapes (IONRs (iron oxide nanorods), IONSs (iron oxide nanospheres), and ITOHs (iron oxide truncated octahedrons)), surface-functionalized with polyethyleneimine (PEI) using the ligand exchange method, as gene delivery systems. Under the guidance of an external magnetic field, PEI@IONPs loaded with plasmid DNA (DNA/PEI@IONPs) encoding GFP showed high transfection efficiency at different weight ratios and time points in A549 and MDA-MB-231 cells. Additionally, the DNA/PEI@IONPs with miRNA34a inserts under a static magnetic field resulted in significant knockdown of the PD-L1 gene, as demonstrated via immunoblotting of the PD-L1 protein. Among the three shapes of IONPs, IONRs showed the highest PD-L1 knockdown efficiency. The genetic expression of miRNA34a was also studied using qPCR and it showed high expression of miRNA in cells treated with PEI@IONRs. Flow cytometry and a live/dead assay confirmed apoptosis after transfection with miRNA34a. To conclude, in this paper, a promising transgene carrier with low cost, negligible cytotoxicity, and high transfection efficiency has been successfully established for miRNA gene delivery in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Richa Pandey
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Feng-Shuo Yang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | | | - Yu-Lun Lo
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ting Wu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yu Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: ; Tel.: +886-7-3121101-2217
| |
Collapse
|
6
|
Actively Targeted Nanomedicines in Breast Cancer: From Pre-Clinal Investigation to Clinic. Cancers (Basel) 2022; 14:cancers14051198. [PMID: 35267507 PMCID: PMC8909490 DOI: 10.3390/cancers14051198] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Despite all the efforts and advances made in the treatment of breast cancer, this pathology continues to be one of the main causes of cancer death in women, particularly triple-negative breast cancer (TNBC), and, although to a lesser degree, HER-2 receptor-positive tumors. Chemotherapy is one of the main treatments available. However, it shows numerous limitations due to its lack of selectivity. In this sense, the selective delivery of antineoplastics to cancer cells can reduce their adverse effects and increase their efficacy. The use of active targeted nanomedicine is a good strategy to achieve this selective chemotherapy. In fact, in recent decades, several active targeted nanoformulations have been approved or reached clinical investigation with excellent results. Among all nanomedicines, antibody-drug conjugates are the most promising. Abstract Breast cancer is one of the most frequently diagnosed tumors and the second leading cause of cancer death in women worldwide. The use of nanosystems specifically targeted to tumor cells (active targeting) can be an excellent therapeutic tool to improve and optimize current chemotherapy for this type of neoplasm, since they make it possible to reduce the toxicity and, in some cases, increase the efficacy of antineoplastic drugs. Currently, there are 14 nanomedicines that have reached the clinic for the treatment of breast cancer, 4 of which are already approved (Kadcyla®, Enhertu®, Trodelvy®, and Abraxane®). Most of these nanomedicines are antibody–drug conjugates. In the case of HER-2-positive breast cancer, these conjugates (Kadcyla®, Enhertu®, Trastuzumab-duocarmycin, RC48, and HT19-MMAF) target HER-2 receptors, and incorporate maytansinoid, deruxtecan, duocarmicyn, or auristatins as antineoplastics. In TNBC these conjugates (Trodelvy®, Glembatumumab-Vedotin, Ladiratuzumab-vedotin, Cofetuzumab-pelidotin, and PF-06647263) are directed against various targets, in particular Trop-2 glycoprotein, NMB glycoprotein, Zinc transporter LIV-1, and Ephrin receptor-4, to achieve this selective accumulation, and include campthotecins, calicheamins, or auristatins as drugs. Apart from the antibody–drug conjugates, there are other active targeted nanosystems that have reached the clinic for the treatment of these tumors such as Abraxane® and Nab-rapamicyn (albumin nanoparticles entrapping placlitaxel and rapamycin respectively) and various liposomes (MM-302, C225-ILS-Dox, and MM-310) loaded with doxorubicin or docetaxel and coated with ligands targeted to Ephrin A2, EPGF, or HER-2 receptors. In this work, all these active targeted nanomedicines are discussed, analyzing their advantages and disadvantages over conventional chemotherapy as well as the challenges involved in their lab to clinical translation. In addition, examples of formulations developed and evaluated at the preclinical level are also discussed.
Collapse
|
7
|
Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022; 51:1702-1728. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer therapy is a significant challenge due to insufficient drug delivery to the cancer cells and non-selective killing of healthy cells by most chemotherapy agents. Nano-formulations have shown great promise for targeted drug delivery with improved efficiency. The shape and size of nanocarriers significantly affect their transport inside the body and internalization into the cancer cells. Non-spherical nanoparticles have shown prolonged blood circulation half-lives and higher cellular internalization frequency than spherical ones. Nanodiscs are desirable nano-formulations that demonstrate enhanced anisotropic character and versatile functionalization potential. Here, we review the recent development of theranostic nanodiscs for cancer mitigation ranging from traditional lipid nanodiscs encased by membrane scaffold proteins to newer nanodiscs where either the membrane scaffold proteins or the lipid bilayers themselves are replaced with their synthetic analogues. We first discuss early cancer detection enabled by nanodiscs. We then explain different strategies that have been explored to carry a wide range of payloads for chemotherapy, cancer gene therapy, and cancer vaccines. Finally, we discuss recent progress on organic-inorganic hybrid nanodiscs and polymer nanodiscs that have the potential to overcome the inherent instability problem of lipid nanodiscs.
Collapse
Affiliation(s)
- Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hairong Ma
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hongjun Liang
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
8
|
cRGD enables rapid phagocytosis of liposomal vancomycin for intracellular bacterial clearance. J Control Release 2022; 344:202-213. [DOI: 10.1016/j.jconrel.2022.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022]
|
9
|
Karataş D, Bahadori F, Tekin A, Ergin Kizilcay G, Celik MS. Enhancing the Kinetic Stability of Polymeric Nanomicelles (PLGA) Using Nano-Montmorillonite for Effective Targeting of Cancer Tumors. J Phys Chem B 2022; 126:463-479. [PMID: 35005971 DOI: 10.1021/acs.jpcb.1c07334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The toxic profile of chemical cross-linkers used in enhancing the stability of self-assembled nanomicelles made of amphiphilic polymeric materials hinders their use in clinical applications. This study was aimed to use the layered structure of Na-montmorillonite (MMT) as a stabilizer for nanomicelles made of poly(d,l-lactide-co-glycolide) (PLGA) amphiphilic polymer. The size of Na-MMT was reduced below 40 nm (nano-MMT) by processing in an attritor prior to its incorporation with PLGA. Hybrid PLGA nano-MMT (PM) nanoparticles (NPs) were prepared using dialysis nanoprecipitation. The size distribution was measured using dynamic light scattering (DLS). Loading 1250 μg of the model drug molecule curcumin to PM (PMC) resulted in obtaining 88 nm-sized particles, suitable for passive targeting of cancer tumors. The structure of nano-MMT and its position in PMC were investigated using FT-IR, differential scanning chalorimetry (DSC), XRF, XRD, ESEM, and EDAX assays, all of which showed the exfoliated structure of nano-MMT incorporated with both hydrophilic and hydrophobic blocks of PLGA. Curcumin was mutually loaded to PLGA and nano-MMT. This firm incorporation caused a serious extension in the release of curcumin from PMC compared to PLGA (PC). Fitting the release profile to different mathematical models showed the remarkable role of nano-MMT in surface modification of PLGA NPs. The ex vivo dynamic model showed the enhanced stability of PMC in simulated blood flow, while cytotoxicity assays showed that nano-MMT does not aggravate the good toxic profile of PLGA but improves the anticancer effect of payload. Nano-MMT could be used as an effective nontoxic stabilizer agent for self-assembled NPs.
Collapse
Affiliation(s)
- Deniz Karataş
- Mineral Processing Engineering Department, Istanbul Technical University, 34469 Maslak, Turkey
| | - Fatemeh Bahadori
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Bezmialem Vakif University, 34093 Fatih, Turkey
| | - Adem Tekin
- Informatics Institute, Istanbul Technical University, 34469 Maslak, Turkey
| | - Gamze Ergin Kizilcay
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey
| | - Mehmet Sabri Celik
- Mineral Processing Engineering Department, Istanbul Technical University, 34469 Maslak, Turkey
| |
Collapse
|
10
|
Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100540. [PMID: 34306980 PMCID: PMC8292848 DOI: 10.1002/advs.202100540] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Indexed: 05/29/2023]
Abstract
Gene therapy provides a promising strategy for curing monogenetic disorders and complex diseases. However, there are challenges associated with the use of viral delivery vectors. The advent of nanomedicine represents a quantum leap in the application of gene therapy. Recent advances in stimulus-responsive nonviral nanocarriers indicate that they are efficient delivery systems for loading and unloading of therapeutic nucleic acids. Some nanocarriers are responsive to cues derived from the internal environment, such as changes in pH, redox potential, enzyme activity, reactive oxygen species, adenosine triphosphate, and hypoxia. Others are responsive to external stimulations, including temperature gradients, light irradiation, ultrasonic energy, and magnetic field. Multiple stimuli-responsive strategies have also been investigated recently for experimental gene therapy.
Collapse
Affiliation(s)
- Cheng Yu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Long Li
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Pei Hu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Yan Yang
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Wei Wei
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xin Deng
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Lu Wang
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | | | - Jingzhi Ma
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| |
Collapse
|
11
|
Wang S, Chen F, Wu H, Zhang Y, Sun K, Yin Y, Chen J, Hossain AMS, Sun B. Enhanced antitumor effect via amplified oxidative stress by near-infrared light-responsive and folate-targeted nanoplatform. NANOTECHNOLOGY 2021; 32:035102. [PMID: 33002884 DOI: 10.1088/1361-6528/abbd71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The efficiency of producing hydroxyl radicals (·OH) from hydrogen peroxide (H2O2) catalyzed by different iron compounds have been explored extensively. Exclusively, ferrocenecarboxylic acid (FCA) showed the best catalyzed activity for ·OH generation. Then, we designed and prepared near-infrared (NIR) light-responsive and folate-targeted nanoplatform, which co-delivered FCA, cisplatin and indocyanine green (ICG) for improving antitumor therapy through amplified oxidative stress. The noteworthy observation is that under the irradiation of NIR light, the lecithin structure could able to depolymerize through the photothermal conversion mechanism of encapsulated dye ICG, which has achieved an intelligent release of drugs. In addition, the released cisplatin is not only fully effective to damage the DNA of cancer cells but it is able to induce the production of intracellular H2O2, which could further be catalyzed by FCA to generate toxic ·OH for oxidative damage via Fenton and Haber-Weiss reaction. This original strategy may provide an efficient way for improved chemotherapy via amplified oxidative stress.
Collapse
Affiliation(s)
- Senlin Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Fanghui Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Hongshuai Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yuchen Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yujie Yin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Abul Monsur Showkot Hossain
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
12
|
Wang S, Wu H, Sun K, Hu J, Chen F, Liu W, Chen J, Sun B, Hossain AMS. A novel pH-responsive Fe-MOF system for enhanced cancer treatment mediated by the Fenton reaction. NEW J CHEM 2021. [DOI: 10.1039/d0nj05105e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel pH-responsive Fe-MOF system for enhancing cancer treatment mediated by a Fenton reaction.
Collapse
Affiliation(s)
- Senlin Wang
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- P. R. China
| | - Hongshuai Wu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- P. R. China
| | - Kai Sun
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- P. R. China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- P. R. China
| | - Fanghui Chen
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- P. R. China
| | - Wen Liu
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- P. R. China
| | - Jian Chen
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- P. R. China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- P. R. China
| | | |
Collapse
|
13
|
Zhou S, Li J, Yu J, Yang L, Kuang X, Wang Z, Wang Y, Liu H, Lin G, He Z, Liu D, Wang Y. A facile and universal method to achieve liposomal remote loading of non-ionizable drugs with outstanding safety profiles and therapeutic effect. Acta Pharm Sin B 2021; 11:258-270. [PMID: 33532191 PMCID: PMC7838024 DOI: 10.1016/j.apsb.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 10/28/2022] Open
Abstract
Liposomes have made remarkable achievements as drug delivery vehicles in the clinic. Liposomal products mostly benefited from remote drug loading techniques that succeeded in amphipathic and/or ionizable drugs, but seemed impracticable for nonionizable and poorly water-soluble therapeutic agents, thereby impeding extensive promising drugs to hitchhike liposomal vehicles for disease therapy. In this study, a series of weak acid drug derivatives were designed by a simplistic one step synthesis, which could be remotely loaded into liposomes by pH gradient method. Cabazitaxel (CTX) weak acid derivatives were selected to evaluate regarding its safety profiles, pharmacodynamics, and pharmacokinetics. CTX weak acid derivative liposomes were superior to Jevtana® in terms of safety profiles, including systemic toxicity, hematological toxicity, and potential central nerve toxicity. Specifically, it was demonstrated that liposomes had capacity to weaken potential toxicity of CTX on cortex and hippocampus neurons. Significant advantages of CTX weak acid derivative-loaded liposomes were achieved in prostate cancer and metastatic cancer therapy resulting from higher safety and elevated tolerated doses.
Collapse
Key Words
- AUC0‒t, area under the curve
- CR, creatinine
- CTX, cabazitaxel
- Cabazitaxel
- Cancer
- Chol, cholesterol
- DA, trans-2-butene-1,4-dicarboxylic acid
- DA-CTX, cabazitaxel trans-2-butene-1,4-dicarboxylic acid derivate
- DSPC, 1,2-dioctadecanoyl-sn-glycero-3-phophocholine
- DSPE-PEG2000, 2-distearoyl-snglycero-3-phosphoethanolamine-N-[methyl(polyethylene glycol)-2000
- EE, encapsulation efficiency
- EPR, enhanced permeability and retention
- GA, glutaric anhydride
- GA-CTX, cabazitaxel glutaric acid derivate
- Lung metastasis
- MED, minimum effective dose
- MPS, mononuclear phagocyte system
- MTD, maximum tolerated dose
- Non-ionizable drugs
- PCa, prostate cancer
- PSA, prostate-specific antigen
- Remote loading liposome
- SA, succinic anhydride
- SA-CTX, cabazitaxel succinic acid derivate
- Safety
- TI, therapeutic index
- Tolerated doses
- Weak acid derivatives
- lipo DA-CTX, DA-CTX liposome
- lipo GA-CTX, GA-CTX liposome
- lipo SA-CTX, SA-CTX liposome
- mCRPCa, metastatic castration-resistant prostate cancer
Collapse
Affiliation(s)
- Shuang Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinbo Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiang Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liyuan Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Kuang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenjie Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingli Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
14
|
Zhong S, Ling Z, Zhou Z, He J, Ran H, Wang Z, Zhang Q, Song W, Zhang Y, Luo J. Herceptin-decorated paclitaxel-loaded poly(lactide- co-glycolide) nanobubbles: ultrasound-facilitated release and targeted accumulation in breast cancers. Pharm Dev Technol 2020; 25:454-463. [PMID: 31873051 DOI: 10.1080/10837450.2019.1709500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ultrasound can promote the drug release from drug-loaded substances and alter the tumor local microenvironment to facilitate the transport of drug carriers into the tumor tissues. Based on the altered tumor microenvironment, nanobubbles (NBs) as drug carriers with surfaces functionalized with targeting ligands can reach the tumor sites, thereby increasing the efficacy of chemotherapy. Herein, paclitaxel (PTX)-loaded poly(lactide-co-glycolide) (PLGA) NBs are prepared as drug carriers with covalently conjugated herceptin (anti-HER2 monoclonal antibody) on the surface to guide the target. The effect of ultrasound on the drug release and targeting of the herceptin-conjugated drug-loaded nanobubbles (PTX-NBs-HER) on the cancerous cells is determined. The use of ultrasound significantly improves the cell targeting capability in vitro, and efficiency of enhanced permeability and retention in vivo. The combination of PTX-NBs-HER and ultrasound facilitates the release of PTX, as well as the uptake and cell apoptosis in vitro. The in vivo application of both PTX-NBs-HER and ultrasound enhances the PTX targeting and accumulation in breast cancers while reducing the transmission and distribution of PTX in healthy organs. The combination of ultrasound with PTX-NBs-HER as contrast agents and drug carriers affords an image-guided drug delivery system for the precise targeted therapy of tumors.
Collapse
Affiliation(s)
- Shigen Zhong
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Zhiyu Ling
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Zhiyi Zhou
- Department of Ultrasound, The General Hospital of Chongqing, Chongqing, China
| | - Jin He
- Department of Ultrasound, The General Hospital of Chongqing, Chongqing, China
| | - Haitao Ran
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Qunxia Zhang
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Weixiang Song
- Institute of Ultrasound Imaging of Chongqing Medical University, Chongqing, China
| | - Yong Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Luo
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Nanobiotechnology: Paving the Way to Personalized Medicine. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
16
|
Afzal M, Ameeduzzafar, Alharbi KS, Alruwaili NK, Al-Abassi FA, Al-Malki AAL, Kazmi I, Kumar V, Kamal MA, Nadeem MS, Aslam M, Anwar F. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy. Semin Cancer Biol 2019; 69:279-292. [PMID: 31870940 DOI: 10.1016/j.semcancer.2019.12.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Amongst the various types of cancer, breast cancer is a highly heterogeneous disease and known as the leading cause of death among women globally. The extensive interdisciplinary investigation in nanotechnology and cancer biomedical research has been evolved over the years for its effective treatment. However, the advent of chemotherapeutic resistance in breast cancer is one of the major confront researchers are facing in achieving successful chemotherapy. Research in the area of cancer nanotechnology over the years have now been revolutionized through the development of smart polymers, lipids, inorganic materials and eventually their surface-engineering with targeting ligands. Moreover, nanotechnology further extended and brings in the notice the new theranostic approach which combining the therapy and imaging simultaneously. Currently, research is being envisaged in the area of novel nano-pharmaceutical design viz. liposome, nanotubes, polymer lipid hybrid system, which focuses to make the chemotherapy curative and long-lasting. In this review, we aimed to discuss the recent advancement of different surface-engineered/targeted nanomedicines that improved the drug efficacy in breast cancer.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | - Ameeduzzafar
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | | | | | - Fahad A Al-Abassi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Natural Product Drug Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Muhammad Aslam
- Statistics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.
| |
Collapse
|
17
|
Lipoprotein Drug Delivery Vehicles for Cancer: Rationale and Reason. Int J Mol Sci 2019; 20:ijms20246327. [PMID: 31847457 PMCID: PMC6940806 DOI: 10.3390/ijms20246327] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Lipoproteins are a family of naturally occurring macromolecular complexes consisting amphiphilic apoproteins, phospholipids, and neutral lipids. The physiological role of mammalian plasma lipoproteins is to transport their apolar cargo (primarily cholesterol and triglyceride) to their respective destinations through a highly organized ligand-receptor recognition system. Current day synthetic nanoparticle delivery systems attempt to accomplish this task; however, many only manage to achieve limited results. In recent years, many research labs have employed the use of lipoprotein or lipoprotein-like carriers to transport imaging agents or drugs to tumors. The purpose of this review is to highlight the pharmacologic, clinical, and molecular evidence for utilizing lipoprotein-based formulations and discuss their scientific rationale. To accomplish this task, evidence of dynamic drug interactions with circulating plasma lipoproteins are presented. This is followed by epidemiologic and molecular data describing the association between cholesterol and cancer.
Collapse
|
18
|
Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother Pharmacol 2019; 84:689-706. [DOI: 10.1007/s00280-019-03910-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022]
|