1
|
Weng MT, Hsiung CY, Wei SC, Chen Y. Nanotechnology for Targeted Inflammatory Bowel Disease Therapy: Challenges and Opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1999. [PMID: 39439396 DOI: 10.1002/wnan.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a complex and recurring inflammatory disorder that affects the gastrointestinal tract and is influenced by genetic predisposition, immune dysregulation, the gut microbiota, and environmental factors. Advanced therapies, such as biologics and small molecules, target diverse immune pathways to manage IBD. Nanoparticle (NP)-based drugs have emerged as effective tools, offering controlled drug release and targeted delivery. This review highlights NP modifications for anti-inflammatory purposes, utilizing changes such as those in size, charge, redox reactions, and ligand-receptor interactions in drug delivery systems. By using pathological and microenvironmental cues to guide NP design, precise targeting can be achieved. In IBD, a crucial aspect of NP intervention is targeting specific types of cells, such as immune and epithelial cells, to address compromised intestinal barrier function and reduce overactive immune responses. This review also addresses current challenges and future prospects, with the goal of advancing the development of NP-mediated strategies for IBD treatment.
Collapse
Affiliation(s)
- Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chia-Yueh Hsiung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Ajalloueian F, Eklund Thamdrup LH, Mazzoni C, Petersen RS, Keller SS, Boisen A. High-yield fabrication of monodisperse multilayer nanofibrous microparticles for advanced oral drug delivery applications. Heliyon 2024; 10:e30844. [PMID: 38799753 PMCID: PMC11126835 DOI: 10.1016/j.heliyon.2024.e30844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Recent advances in the use of nano- and microparticles in drug delivery, cell therapy, and tissue engineering have led to increasing attention towards nanostructured microparticulate formulations for maximum benefit from both nano- and micron sized features. Scalable manufacturing of monodisperse nanostructured microparticles with tunable size, shape, content, and release rate remains a big challenge. Current technology, mainly comprises complex multi-step chemical procedures with limited control over these aspects. Here, we demonstrate a novel technique for high-yield fabrication of monodisperse monolayer and multilayer nanofibrous microparticles (MoNami and MuNaMi respectively). The fabrication procedure includes sequential electrospinning followed by micro-cutting at room temperature and transfer of particles for collection. The big advantage of the introduced technique is the potential to apply several polymer-drug combinations forming multilayer microparticles enjoying extracellular matrix (ECM)-mimicking architecture with tunable release profile. We demonstrate the fabrication and study the factors affecting the final three-dimensional structure. A model drug is encapsulated into a three-layer sheet (PLGA-pullulan-PLGA), and we demonstrate how the release profile changes from burst to sustain by simply cutting particles out of the electrospun sheet. We believe our fabrication method offers a unique and facile platform for realizing advanced microparticles for oral drug delivery applications.
Collapse
Affiliation(s)
- Fatemeh Ajalloueian
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsted Plads, 2800, Kgs. Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsted Plads, 2800, Kgs. Lyngby, Denmark
| | - Chiara Mazzoni
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsted Plads, 2800, Kgs. Lyngby, Denmark
| | - Ritika Singh Petersen
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anja Boisen
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsted Plads, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Tan M, Zhang X, Sun S, Cui G. Nanostructured steady-state nanocarriers for nutrients preservation and delivery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:31-93. [PMID: 37722776 DOI: 10.1016/bs.afnr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food bioactives possess specific physiological benefits of preventing certain diet-related chronic diseases or maintain human health. However, the limitations of the bioactives are their poor stability, lower water solubility and unacceptable bioaccessibility. Structure damage or degradation is often found for the bioactives under certain environmental conditions like high temperature, strong light, extreme pH or high oxygen concentration during food processing, packaging, storage and absorption. Nanostructured steady-state nanocarriers have shown great potential in overcoming the drawbacks for food bioactives. Various delivery systems including solid form delivery system, liquid form delivery system and encapsulation technology have been developed. The embedded food nutrients can largely decrease the loss and degradation during food processing, packaging and storage. The design and application of stimulus and targeted delivery systems can improve the stability, bioavailability and efficacy of the food bioactives upon oral consumption due to enzymatic degradation in the gastrointestinal tract. The food nutrients encapsulated in the smart delivery system can be well protected against degradation during oral administration, thus improving the bioavailability and releazing controlled or targeted release for food nutrients. The encapsulated food bioactives show great potential in nutrition therapy for sub-health status and disease. Much effort is required to design and prepare more biocompatible nanostructured steady-state nanocarriers using food-grade protein or polysaccharides as wall materials, which can be used in food industry and maintain the human health.
Collapse
Affiliation(s)
- Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China.
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| |
Collapse
|
5
|
Production of nanostructured systems: Main and innovative techniques. Drug Discov Today 2023; 28:103454. [PMID: 36402265 DOI: 10.1016/j.drudis.2022.103454] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
In the constant search for the development of more-specific and more-selective drugs, especially with regard to the challenge of encapsulating hydrophilic molecules, polymer nanotechnologies are remarkable for their biocompatible and biodegradable properties. The most-used nanoencapsulation methods consist of emulsification procedures, where emulsified droplets of a given polymer and drug solidify into nanoparticles after solvent extraction from the polymeric phase. This review introduces conventional emulsification methods but also highlights new emulsification technologies such as microfluidics, membrane emulsification and other techniques, including spray drying, inkjet printing and electrospraying.
Collapse
|
6
|
Li DF, Yang MF, Xu HM, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Wang JY, Liang YJ, Yao J, Wang LS. Nanoparticles for oral delivery: targeted therapy for inflammatory bowel disease. J Mater Chem B 2022; 10:5853-5872. [PMID: 35876136 DOI: 10.1039/d2tb01190e] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a group of chronic and idiopathic gastrointestinal (GI) disorders, inflammatory bowel disease (IBD) is characterized by recurrent intestinal mucosal inflammation. Oral administration is critical for the treatment of IBD. Unfortunately, it is difficult to target the bowel located in the GI tract due to multiple physical barriers. The unique physicochemical properties of nanoparticle-based drug delivery systems (DDSs) and their enhanced permeability and retention effects in the inflamed bowel, render nanomedicines to be used to implement precise drug delivery at diseased sites in IBD therapy. In this review, we described the pathophysiological features of IBD, and designed strategies to exploit these features for intestinal targeting. In addition, we introduced the types of currently developed nano-targeted carriers, including synthetic nanoparticle-based and emerging naturally derived nanoparticles (e.g., extracellular vesicles and plant-derived nanoparticles). Moreover, recent developments in targeted oral nanoparticles for IBD therapy were also highlighted. Finally, we presented challenges associated with nanotechnology and potential directions for future IBD treatment.
Collapse
Affiliation(s)
- De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou 516000, Guangdong, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510030, China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children's Hospital, No. 7019, Yitian Road, Futian District, Shenzhen 518026, Guangdong, China.
| | - Yu-Jie Liang
- Shenzhen Kangning Hospital, No. 1080, Cuizu Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Luohu District, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
7
|
Rahiman N, Markina YV, Kesharwani P, Johnston TP, Sahebkar A. Curcumin-based nanotechnology approaches and therapeutics in restoration of autoimmune diseases. J Control Release 2022; 348:264-286. [PMID: 35649486 DOI: 10.1016/j.jconrel.2022.05.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases usually arise as a result of an aberrant immune system attack on normal tissues of the body, which leads to a cascade of inflammatory reactions. The immune system employs different types of protective and anti-inflammatory cells for the regulation of this process. Curcumin is a known natural anti-inflammatory agent that inhibits pathological autoimmune processes by regulating inflammatory cytokines and their associated signaling pathways in immune cells. Due to the unstable nature of curcumin and its susceptibility to either degradation, or metabolism into other chemical entities (i.e., metabolites), encapsulation of this agent into various nanocarriers would appear to be an appropriate strategy for attaining greater beneficial effects from curcumin as it pertains to immunomodulation. Many studies have focused on the design and development of curcumin nanodelivery systems (micelles, dendrimers, and diverse nanocarriers) and are summarized in this review in order to obtain greater insight into novel drug delivery systems for curcumin and their suitability for the management of autoimmune diseases.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad, Iran
| | - Yuliya V Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology of FSBI "Petrovsky National Research Center of Surgery", 3 Tsyurupy Str., 117418, Moscow, Russia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
8
|
Tie S, Tan M. Current Advances in Multifunctional Nanocarriers Based on Marine Polysaccharides for Colon Delivery of Food Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:903-915. [PMID: 35072455 DOI: 10.1021/acs.jafc.1c05012] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inflammatory bowel disease (IBD) has been considered as a chronic disease that is difficult to cure and needs lifelong treatment. Marine polysaccharides with good biocompatibility and biodegradability, mucoadhesion, sensitivity to external stimuli, and targeting ability can be used as wall materials for oral colon-targeted delivery of polyphenols in nutrition intervention of IBD. This manuscript reviewed the latest progress in the design, preparation, and characterization of marine polysaccharides-derived multifunctional nanocarriers for polyphenol colon delivery. Chitosan, sodium alginate, chondroitin sulfate, and hyaluronic acid were discussed in the preparation of polyphenol delivery systems. The design strategy, synthesis methods, and structure characterization of multifunctional polyphenol carriers including stimuli-responsive nanocarriers, mucoadhesive and mucus-penetrating nanocarriers, colon targeted nanocarriers, and bioactive compounds codelivery nanocarriers were reviewed in the alleviation of IBD. The research perspectives in the preparation and characterization of delivery carriers using marine polysaccharide as materials were proposed for their potential application in food bioactive components.
Collapse
Affiliation(s)
- Shanshan Tie
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
9
|
Wang CPJ, Byun MJ, Kim SN, Park W, Park HH, Kim TH, Lee JS, Park CG. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment. J Control Release 2022; 345:1-19. [DOI: 10.1016/j.jconrel.2022.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
|
10
|
Zhang C, Chen Z, He Y, Xian J, Luo R, Zheng C, Zhang J. Oral colon-targeting core-shell microparticles loading curcumin for enhanced ulcerative colitis alleviating efficacy. Chin Med 2021; 16:92. [PMID: 34551815 PMCID: PMC8456585 DOI: 10.1186/s13020-021-00449-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Background The oral colon-targeting drug delivery vehicle is vital for the efficient application of curcumin (Cur) in ulcerative colitis (UC) treatment because of its lipophilicity and instability in the gastrointestinal tract. Methods The core–shell microparticle (MP) system composed of eco-friendly materials, zein and shellac, was fabricated using a coaxial electrospray technique. In this manner, Cur was loaded in the zein core, with shellac shell coating on it. The colon-targeting efficiency and accumulation capacity of shellac@Cur/zein MPs were evaluated using a fluorescence imaging test. The treatment effects of free Cur, Cur/zein MPs, and shellac@Cur/zein MPs in acute experimental colitis were compared. Results With the process parameters optimized, shellac@Cur/zein MPs were facilely fabricated with a stable cone-jet mode, exhibiting standard spherical shape, uniform size distribution (2.84 ± 0.15 µm), and high encapsulation efficiency (95.97% ± 3.51%). Particularly, with the protection of shellac@zein MPs, Cur exhibited sustained drug release in the simulated gastrointestinal tract. Additionally, the in vivo fluorescence imaging test indicated that the cargo loaded in shellac@zein MPs improves the colon-targeting efficiency and accumulation capacity at the colonitis site. More importantly, compared with either free Cur or Cur/zein MPs, the continuous oral administration of shellac@Cur/zein MPs for a week could efficiently inhibit inflammation in acute experimental colitis. Conclusion The shellac@Cur/zein MPs would act as an effective oral drug delivery system for UC management.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine and, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, PR China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jing Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chuan Zheng
- Oncology Teaching and Research Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China. .,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
11
|
Zu M, Ma Y, Cannup B, Xie D, Jung Y, Zhang J, Yang C, Gao F, Merlin D, Xiao B. Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases. Adv Drug Deliv Rev 2021; 176:113887. [PMID: 34314785 DOI: 10.1016/j.addr.2021.113887] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/27/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
The incidence of inflammatory bowel disease (IBD) is rapidly rising throughout the world. Although tremendous efforts have been made, limited therapeutics are available for IBD management. Natural active small molecules (NASMs), which are a gift of nature to humanity, have been widely used in the prevention and alleviation of IBD; they have numerous advantageous features, including excellent biocompatibility, pharmacological activity, and mass production potential. Oral route is the most common and acceptable approach for drug administration, but the clinical application of NASMs in IBD treatment via oral route has been seriously restricted by their inherent limitations such as high hydrophobicity, instability, and poor bioavailability. With the development of nanotechnology, polymeric nanoparticles (NPs) have provided a promising platform that can efficiently encapsulate versatile NASMs, overcome multiple drug delivery barriers, and orally deliver the loaded NASMs to targeted tissues or cells while enhancing their stability and bioavailability. Thus, NPs can enhance the preventive and therapeutic effects of NASMs against IBD. Herein, we summarize the recent knowledge about polymeric matrix-based carriers, targeting ligands for drug delivery, and NASMs. We also discuss the current challenges and future developmental directions.
Collapse
Affiliation(s)
- Menghang Zu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Ya Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Brandon Cannup
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States
| | - Dengchao Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Geumjeong-gu, Busan 46241, South Korea
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States; Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, Georgia 30302, United States; Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, United States.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
12
|
Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021; 175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Current treatment strategies for inflammatory bowel disease (IBD) seek to alleviate the undesirable symptoms of the disorder. Despite the higher specificity of newer generation therapeutics, e.g. monoclonal antibodies, adverse effects still arise from their interference with non-specific systemic immune cascades. To circumvent such undesirable effects, both conventional and newer therapeutic options can benefit from various targeting strategies. Of course, both the development and the assessment of the efficiency of such targeted delivery systems necessitate the use of suitable in vivo and in vitro models representing relevant pathophysiological manifestations of the disorder. Accordingly, the current review seeks to provide a comprehensive discussion of the available preclinical models with emphasis on human in vitro models of IBD, along with their potentials and limitations. This is followed by an elaboration on the advancements in the field of biology- and nanotechnology-based targeted drug delivery systems and the potential rooms for improvement to facilitate their clinical translation.
Collapse
Affiliation(s)
- Olga Hartwig
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | | | - Karim S Shalaby
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany; Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, D-53121 Bonn, Germany.
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
13
|
Safi AF, Kauke M, Nelms L, Palmer WJ, Tchiloemba B, Kollar B, Haug V, Pomahač B. Local immunosuppression in vascularized composite allotransplantation (VCA): A systematic review. J Plast Reconstr Aesthet Surg 2020; 74:327-335. [PMID: 33229219 DOI: 10.1016/j.bjps.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/07/2020] [Accepted: 10/11/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Local immunosuppression in vascularized composite allotransplantation (VCA) aims to minimize immunosuppressant-related toxic and malignant side effects. Promising allograft survival data have been published by multiple workgroups. In this systematic review, we examine preclinical animal studies that investigated local immunosuppression in VCA. MATERIAL AND METHODS We conducted a systematic review of manuscripts listed in the MEDLINE and PubMed database concerning preclinical VCA models. Papers included had to be available as full-text and written in English. Non-VCA studies, human trials, and studies using cell-based therapy strategies were excluded. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Literature research retrieved 980 articles. Ten studies published between 2010 and 2019 met the inclusion and exclusion criteria. Seven out of ten articles demonstrated a significant prolongation of allograft survival by using local immunosuppression. Five articles employed tacrolimus (TAC) as the main immunosuppressive agent. Seven studies performed hind-limb VCA in a rat model. CONCLUSION The easily accessible location of skin containing VCAs makes it an ideal candidate for local immunosuppression. Published preclinical data are very promising in terms of improved allograft survival and reduced systemic toxicity.
Collapse
Affiliation(s)
- Ali-Farid Safi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Martin Kauke
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Laurel Nelms
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - William Jackson Palmer
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Bianief Tchiloemba
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Branislav Kollar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Valentin Haug
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Bohdan Pomahač
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Luo R, Lin M, Zhang C, Shi J, Zhang S, Chen Q, Hu Y, Zhang M, Zhang J, Gao F. Genipin-crosslinked human serum albumin coating using a tannic acid layer for enhanced oral administration of curcumin in the treatment of ulcerative colitis. Food Chem 2020; 330:127241. [DOI: 10.1016/j.foodchem.2020.127241] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/24/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
|
15
|
Effect of particle size on the cellular uptake and anti-inflammatory activity of oral nanotherapeutics. Colloids Surf B Biointerfaces 2020; 187:110880. [PMID: 32098717 DOI: 10.1016/j.colsurfb.2020.110880] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
To elucidate the impacts of particle size on the cell internalization and anti-inflammatory activity of oral nanotherapeutics, curcumin (CUR)-loaded polymeric nanoparticles (NPs) with different particle sizes were fabricated. The obtained NPs with particle sizes (185-884 nm) and negative zeta potentials (approximately -25 mV) had desirable CUR loading amounts (5.1-6.1 %) and high CUR encapsulation efficiency (73.2-89.6 %). In vitro cellular uptake assays revealed that the cell internalization efficiencies of NPs were increased with the increase of their particle sizes, and NPs (900) showed the highest phagocytosis efficiency in macrophages among all the tested NPs. Importantly, NPs (900) exhibited significantly stronger capability to downregulate the production of the main pro-inflammatory cytokines from macrophages when they were compared with NPs (200) and NPs (500). Further animal studies suggested that oral administration of hydrogel (chitosan and alginate)-embedding NPs (900) could efficiently accumulate in colitis tissue in a manner that was comparable to that of NPs (200) and NPs (500) and could achieve the best treatment efficacy against ulcerative colitis (UC). Collectively, these findings can serve as a guideline for the rational design of nanotherapeutics with desirable accumulation profiles in colitis tissue, maximized cellular uptake efficiency in macrophages, and good therapeutic outcomes against UC.
Collapse
|