1
|
Jia K, Wang J, Zhai R, Du Y, Kira J, Wu C, Qian PY, Zhang W. Abi Family Protein, DidK, Is Involved in the Maturation of Anticancer Depsipeptide, Didemnin B. ACS Chem Biol 2023; 18:2300-2308. [PMID: 37773034 DOI: 10.1021/acschembio.3c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Didemnin B is a marine-derived depsipeptide with potent antiviral and anticancer activities. A prodrug activation mechanism was previously proposed for the biosynthesis of didemnin B by the nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) assembly line, but the enzyme involved in the maturation process remained unknown. Herein, we demonstrated that DidA, a dimodular NRPS predicted with unrelated activity to didemnin B structure assembly, was indispensable to produce didemnin B, confirming the prodrug mechanism in didemnin B biosynthesis. We further identified an Abi family transmembrane protease, DidK, that functioned as an esterase in the maturation step of didemnin B by in vivo gene knockout and heterologous expression. DidK is structurally distinct from other known hydrolytic enzymes involved in the maturation of bacterial nonribosomal peptides and is the first Abi family protein known to participate in NRPS/PKS-derived natural product production. Further bioinformatic analysis revealed more than 20 DidK homologues encoded in bacterial NRPS/PKS BGCs, suggesting that the involvement of Abi family proteins in natural product biosynthesis might not be rare. These results not only clarify the priming and maturation steps of didemnin B biosynthesis but also expand the function scope of Abi family proteins.
Collapse
Affiliation(s)
- Kaimin Jia
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Jiayu Wang
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Jenna Kira
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Chuanhai Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Paguirigan JAG, Kim JA, Hur JS, Kim W. Identification of a biosynthetic gene cluster for a red pigment cristazarin produced by a lichen-forming fungus Cladonia metacorallifera. PLoS One 2023; 18:e0287559. [PMID: 37352186 PMCID: PMC10289310 DOI: 10.1371/journal.pone.0287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
Lichens are known to produce many novel bioactive metabolites. To date, approximately 1,000 secondary metabolites have been discovered, which are predominantly produced by the lichen mycobionts. However, despite the extensive studies on production of lichen secondary metabolites, little is known about the responsible biosynthetic gene clusters (BGCs). Here, we identified a putative BGC that is implicated in production of a red pigment, cristazarin (a naphthazarin derivative), in Cladonia metacorallifera. Previously, cristazarin was shown to be specifically induced in growth media containing fructose as a sole carbon source. Thus, we performed transcriptome analysis of C. metacorallifera growing on different carbon sources including fructose to identify the BGC for cristazarin. Among 39 polyketide synthase (PKS) genes found in the genome of C. metacorallifera, a non-reducing PKS (coined crz7) was highly expressed in growth media containing either fructose or glucose. The borders of a cristazarin gene cluster were delimited by co-expression patterns of neighboring genes of the crz7. BGCs highly conserved to the cristazarin BGC were also found in C. borealis and C. macilenta, indicating that these related species also have metabolic potentials to produce cristazarin. Phylogenetic analysis revealed that the Crz7 is sister to fungal PKSs that biosynthesize an acetylated tetrahydoxynaphthalene as a precursor of melanin pigment. Based on the phylogenetic placement of the Crz7 and putative functions of its neighboring genes, we proposed a plausible biosynthetic route for cristazarin. In this study, we identified a lichen-specific BGC that is likely involved in the biosynthesis of a naphthazarin derivative, cristazarin, and confirmed that transcriptome profiling under inducing and non-inducing conditions is an effective strategy for linking metabolites of interest to biosynthetic genes.
Collapse
Affiliation(s)
- Jaycee Augusto Gumiran Paguirigan
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Jung A. Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| |
Collapse
|
3
|
Correia GD, Marchesi JR, MacIntyre DA. Moving beyond DNA: towards functional analysis of the vaginal microbiome by non-sequencing-based methods. Curr Opin Microbiol 2023; 73:102292. [PMID: 36931094 DOI: 10.1016/j.mib.2023.102292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Over the last two decades, sequencing-based methods have revolutionised our understanding of niche-specific microbial complexity. In the lower female reproductive tract, these approaches have enabled identification of bacterial compositional structures associated with health and disease. Application of metagenomics and metatranscriptomics strategies have provided insight into the putative function of these communities but it is increasingly clear that direct measures of microbial and host cell function are required to understand the contribution of microbe-host interactions to pathophysiology. Here we explore and discuss current methods and approaches, many of which rely upon mass-spectrometry, being used to capture functional insight into the vaginal mucosal interface. In addition to improving mechanistic understanding, these methods offer innovative solutions for the development of diagnostic and therapeutic strategies designed to improve women's health.
Collapse
Affiliation(s)
- Gonçalo Ds Correia
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK
| | - Julian R Marchesi
- March of Dimes Prematurity Research Centre at Imperial College London, London, UK; Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, Imperial College London, London W2 1NY, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK; March of Dimes Prematurity Research Centre at Imperial College London, London, UK.
| |
Collapse
|
4
|
Effect of Extraction Methods on Essential Oil Composition: A Case Study of Irish Bog Myrtle-Myrica gale L. SEPARATIONS 2023. [DOI: 10.3390/separations10020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Myrica gale is an aromatic peatland shrub that has reported traditional use as an insect repellent. Different extraction methodologies were used in this study to isolate the essential oil of Myrica gale L., including Clevenger hydrodistillation (CH) and microwave-assisted hydrodistillation (MAH). The oils, isolated from different plant parts (leaves, fruit and branches) collected in summer and autumn, were analysed by GC-MS and the volatiles from plant tissue were directly analysed by headspace-GC-MS. A total of 58 components were identified, including 15 monoterpene hydrocarbons (22.78–98.98%), 14 oxygenated monoterpenes (0.91–43.02%), 13 sesquiterpene hydrocarbons (0.05–24.98%), 3 oxygenated sesquiterpenes (0.07–13.16%) and 13 other compounds (0.05–5.21%). Headspace sampling furnished monoterpenes, while CH and MAH extracted monoterpenes and sesquiterpenes, with α-pinene (6.04–70.45%), eucalyptol (0.61–33.80%), limonene (2.27–20.73%) and α-phellandrene (2.33–15.61%) as major components in all plant parts. Quantitative differences occurred between extraction methodologies, with MAH yielding higher quantities of monoterpene and sesquiterpene hydrocarbons and CH targeting oxygenated counterparts. Leaves gave more complex chemical fingerprints than branches and fruit, and the summer collection yielded more components than the autumn collections. An OPLS-DA model was applied to the GC-MS data to compare the chemical profiles based on the extraction techniques and plant parts, and molecular networks were obtained for monoterpenes and sesquiterpenes connected via biosynthetic pathways. The essential oil profile of Myrica gale was influenced by the season of collection, plant part and extraction method.
Collapse
|
5
|
Wang YD, Yang J, Li Q, Li YY, Tan XM, Yao SY, Niu SB, Deng H, Guo LP, Ding G. UPLC-Q-TOF-MS/MS Analysis of Seco-Sativene Sesquiterpenoids to Detect New and Bioactive Analogues From Plant Pathogen Bipolaris sorokiniana. Front Microbiol 2022; 13:807014. [PMID: 35356527 PMCID: PMC8959811 DOI: 10.3389/fmicb.2022.807014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Seco-sativene sesquiterpenoids are an important member of phytotoxins and plant growth regulators isolated from a narrow spectrum of fungi. In this report, eight seco-sativene sesquiterpenoids (1-8) were first analyzed using the UPLC-Q-TOF-MS/MS technique in positive mode, from which their mass fragmentation pathways were suggested. McLafferty rearrangement, 1,3-rearrangement, and neutral losses were considered to be the main fragmentation patterns for the [M+1]+ ions of 1-8. According to the structural features (of different substitutes at C-1, C-2, and C-13) in compounds 1-8, five subtypes (A-E) of seco-sativene were suggested, from which subtypes A, B/D, and E possessed the diagnostic daughter ions at m/z 175, 189, and 203, respectively, whereas subtype C had the characteristic daughter ion at m/z 187 in the UPLC-Q-TOF-MS/MS profiles. Based on the fragmentation patterns of 1-8, several known compounds (1-8) and two new analogues (9 and 10) were detected in the extract of plant pathogen fungus Bipolaris sorokiniana based on UPLC-Q-TOF-MS/MS analysis, of which 1, 2, 9, and 10 were then isolated and elucidated by NMR spectra. The UPLC-Q-TOF-MS/MS spectra of these two new compounds (9 and 10) were consistent with the fragmentation mechanisms of 1-8. Compound 1 displayed moderate antioxidant activities with IC50 of 0.90 and 1.97 mM for DPPH and ABTS+ scavenging capacity, respectively. The results demonstrated that seco-sativene sesquiterpenoids with the same subtypes possessed the same diagnostic daughter ions in the UPLC-Q-TOF-MS/MS profiles, which could contribute to structural characterization of seco-sativene sesquiterpenoids. Our results also further supported that UPLC-Q-TOF-MS/MS is a powerful and sensitive tool for dereplication and detection of new analogues from crude extracts of different biological origins.
Collapse
Affiliation(s)
- Yan-Duo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Yuan Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang-Mei Tan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Si-Yang Yao
- Department of Pharmacy, Beijing City University, Beijing, China
| | - Shu-Bin Niu
- Department of Pharmacy, Beijing City University, Beijing, China
| | - Hui Deng
- Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lan-Ping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Wang T, Li F, Lu Q, Wu G, Jiang Z, Liu S, Habden X, Razumova EA, Osterman IA, Sergiev PV, Dontsova OA, Hu X, You X, Sun C. Diversity, novelty, antimicrobial activity, and new antibiotics of cultivable endophytic actinobacteria isolated from psammophytes collected from Taklamakan Desert. J Pharm Anal 2021; 11:241-250. [PMID: 34012700 PMCID: PMC8116205 DOI: 10.1016/j.jpha.2020.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022] Open
Abstract
Three hundred and twenty endophytic actinobacterial strains were isolated from psammophytes collected from Taklamakan Desert and identified. Among them, three strains already had been identified as new species of two genera and sixteen isolates showed relatively low 16S rRNA similarities < 98.6% to validly described species. Seventy-five of the isolates were selected as representative strains to screen antibacterial activity and mechanism. Forty-seven strains showed antagonistic activity against at least one of the indicator bacteria. Two Streptomyces strains produced bioactive compounds inducing DNA damage, and two Streptomyces strains produced bioactive compounds with inhibitory activity on protein biosynthesis. Notably, the strain Streptomyces sp. 8P21H-1 that demonstrated both strong antibacterial activity and inhibitory activity on protein biosynthesis was prioritized for exploring new antibiotics. Under the strategy of integrating genetics-based discovery program and MS/MS-based molecular networking, two new streptogramin-type antibiotics, i.e., acetyl-griseoviridin and desulphurizing griseoviridin, along with known griseoviridin, were isolated from the culture broth of strain 8P21H-1. Their chemical structures were determined by HR-MS, and 1D and 2D NMR. Desulphurizing griseoviridin and griseoviridin exhibited antibacterial activities by inhibiting translation.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Feina Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qinpei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Gang Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhongke Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shaowei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xugela Habden
- College of Life Science, Xinjiang Normal University, Urumchi, 830054, China
| | | | - Ilya A. Osterman
- Lomonosov Moscow State University, Moscow, 119992, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - Petr V. Sergiev
- Lomonosov Moscow State University, Moscow, 119992, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
| | - Olga A. Dontsova
- Lomonosov Moscow State University, Moscow, 119992, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 143025, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 119992, Russia
| | - Xinxin Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xuefu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Chenghang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
7
|
Chaudhary T, Gera R, Shukla P. Emerging Molecular Tools for Engineering Phytomicrobiome. Indian J Microbiol 2021; 61:116-124. [PMID: 33927453 DOI: 10.1007/s12088-020-00915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022] Open
Abstract
Microbial plant interaction plays a major role in the sustainability of plants. The understanding of phytomicrobiome interactions enables the gene-editing tools for the construction of the microbial consortia. In this interaction, microbes share several common secondary metabolites and terpenoid metabolic pathways with their host plants that ensure a direct connection between the microbiome and associated plant metabolome. In this way, the CRISPR-mediated gene-editing tool provides an attractive approach to accomplish the creation of microbial consortia. On the other hand, the genetic manipulation of the host plant with the help of CRISPR-Cas9 can facilitate the characterization and identification of the genetic determinants. It leads to the enhancement of microbial capacity for more trait improvement. Many plant characteristics like phytovolatilization, phytoextraction, phytodesalination and phytodegradation are targeted by these approaches. Alternatively, chemical communications by PGPB are accomplished by the exchange of different signal molecules. For example, quorum-sensing is the way of the cell to cell communication in bacteria that lead to the detection of metabolites produced by pathogens during adverse conditions and also helpful in devising some tactics towards understanding plant immunity. Along with quorum-sensing, different volatile organic compounds and N-acyl homoserine lactones play a significant role in cell to cell communication by microbe to plant and among the plants respectively. Therefore, it is necessary to get details of all the significant approaches that are useful in exploring cell to cell communications. In this review, we have described gene-editing tools and the cell to cell communication process by quorum-sensing based signaling. These signaling processes via CRISPR- Cas9 mediated gene editing can improve the microbe-plant community in adverse climatic conditions.
Collapse
Affiliation(s)
- Twinkle Chaudhary
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001 India
| | - Rajesh Gera
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001 India.,Present Address: School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
8
|
Exploring Endophytes Using “Omics”: An Approach for Sustainable Production of Bioactive Metabolites. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Mechanism of action of secondary metabolites from marine-derived Streptoymces on bacterial isolates by membrane permeability. Microb Pathog 2020; 149:104532. [DOI: 10.1016/j.micpath.2020.104532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022]
|
10
|
Williams PC, Wernke KM, Tirla A, Herzon SB. Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite. Nat Prod Rep 2020; 37:1532-1548. [PMID: 33174565 PMCID: PMC7700718 DOI: 10.1039/d0np00072h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2015 to 2020 The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut.
Collapse
Affiliation(s)
- Peyton C Williams
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Alina Tirla
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA. and Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
11
|
Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, van der Hooft JJJ, Ernst M, Kang KB, Aceves CM, Caraballo-Rodríguez AM, Koester I, Weldon KC, Bertrand S, Roullier C, Sun K, Tehan RM, Boya P CA, Christian MH, Gutiérrez M, Ulloa AM, Tejeda Mora JA, Mojica-Flores R, Lakey-Beitia J, Vásquez-Chaves V, Zhang Y, Calderón AI, Tayler N, Keyzers RA, Tugizimana F, Ndlovu N, Aksenov AA, Jarmusch AK, Schmid R, Truman AW, Bandeira N, Wang M, Dorrestein PC. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc 2020; 15:1954-1991. [PMID: 32405051 DOI: 10.1038/s41596-020-0317-5] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS2) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS2 data with sample information (metadata) and annotated MS2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.
Collapse
Affiliation(s)
- Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Louis-Félix Nothias
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mélissa Nothias-Esposito
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Amina Bouslimani
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Daniel Petras
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Julia M Gauglitz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nicole Sikora
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Madeleine Ernst
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Christine M Aceves
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Irina Koester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kelly C Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center of Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Nantes, France
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, Nantes, France
| | - Catherine Roullier
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, Nantes, France
| | - Kunyang Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Richard M Tehan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Cristopher A Boya P
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Nagarjuna Nagar, India
| | - Martin H Christian
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | | | | | - Randy Mojica-Flores
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Departamento de Química, Universidad Autónoma de Chiriquí (UNACHI), David, Chiriquí, Panama
| | - Johant Lakey-Beitia
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| | - Victor Vásquez-Chaves
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Yilue Zhang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Angela I Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Nicole Tayler
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Nagarjuna Nagar, India
| | - Robert A Keyzers
- School of Chemical & Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Fidele Tugizimana
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
- International R&D Division, Omnia Group (Pty) Ltd., Johannesburg, South Africa
| | - Nombuso Ndlovu
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Alexander A Aksenov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Alan K Jarmusch
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Robin Schmid
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
| | - Mingxun Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Computational Mass Spectrometry, University of California, San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Abstract
Colibactin is a genotoxic gut microbiome metabolite long suspected of playing an etiological role in colorectal cancer. Evidence suggests that colibactin forms DNA interstrand cross-links (ICLs) in eukaryotic cells and activates ICL repair pathways, leading to the production of ICL-dependent DNA double-strand breaks (DSBs). Here we show that colibactin ICLs can evolve directly to DNA DSBs. Using the topology of supercoiled plasmid DNA as a proxy for alkylation adduct stability, we find that colibactin-derived ICLs are unstable toward depurination and elimination of the 3' phosphate. This ICL degradation pathway leads progressively to single strand breaks (SSBs) and subsequently DSBs. The spontaneous conversion of ICLs to DSBs is consistent with the finding that nonhomologous end joining repair-deficient cells are sensitized to colibactin-producing bacteria. The results herein refine our understanding of colibactin-derived DNA damage and underscore the complexities underlying the DSB phenotype.
Collapse
Affiliation(s)
- Mengzhao Xue
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Kevin M Wernke
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Seth B Herzon
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Department of Pharmacology , Yale School of Medicine , New Haven , Connecticut 06520 , United States
| |
Collapse
|
13
|
Bader CD, Panter F, Müller R. In depth natural product discovery - Myxobacterial strains that provided multiple secondary metabolites. Biotechnol Adv 2019; 39:107480. [PMID: 31707075 DOI: 10.1016/j.biotechadv.2019.107480] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/28/2022]
Abstract
In recognition of many microorganisms ability to produce a variety of secondary metabolites in parallel, Zeeck and coworkers introduced the term "OSMAC" (one strain many compounds) around the turn of the century. Since then, additional efforts focused on the systematic characterization of a single bacterial species ability to form multiple secondary metabolite scaffolds. With the beginning of the genomic era mainly initiated by a dramatic reduction of sequencing costs, investigations of the genome encoded biosynthetic potential and especially the exploitation of biosynthetic gene clusters of undefined function gained attention. This was seen as a novel means to extend range and diversity of bacterial secondary metabolites. Genome analyses showed that even for well-studied bacterial strains, like the myxobacterium Myxococcus xanthus DK1622, many biosynthetic gene clusters are not yet assigned to their corresponding hypothetical secondary metabolites. In contrast to the results from emerging genome and metabolome mining techniques that show the large untapped biosynthetic potential per strain, many newly isolated bacterial species are still used for the isolation of only one target compound class and successively abandoned in the sense that no follow up studies are published from the same species. This work provides an overview about myxobacterial bacterial strains, from which not just one but multiple different secondary metabolite classes were successfully isolated. The underlying methods used for strain prioritization and natural product discovery such as biological characterization of crude extracts against a panel of pathogens, in-silico prediction of secondary metabolite abundance from genome data and state of the art instrumental analytics required for new natural product scaffold discovery in comparative settings are summarized and classified according to their output. Furthermore, for each approach selected studies performed with actinobacteria are shown to underline especially innovative methods used for natural product discovery.
Collapse
Affiliation(s)
- Chantal D Bader
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Fabian Panter
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.
| |
Collapse
|
14
|
Abstract
The clb gene cluster encodes the biosynthesis of metabolites known as precolibactins and colibactins. The clb pathway is found in gut commensal E. coli, and clb metabolites are thought to initiate colorectal cancer via DNA cross-linking. Here we report confirmation of the structural assignment of the complex clb product precolibactin 886 via a biomimetic synthetic pathway. We show that a α-ketoimine linear precursor undergoes spontaneous cyclization to precolibactin 886 upon HPLC purification. Studies of this α-ketoimine and the related α-dicarbonyl revealed that these compounds are unexpectedly susceptible to nucleophilic cleavage under mildly basic conditions. This cleavage pathway forms other known clb metabolites or biosynthetic intermediates and explains the difficulties in isolating fully mature biosynthetic products. This cleavage also accounts for a recently identified colibactin–adenine adduct. The colibactin peptidase ClbP deacylates synthetic precolibactin 886 to form a non-genotoxic pyridone, suggesting precolibactin 886 lies off-path of the major biosynthetic route.
Collapse
|
15
|
Xue M, Kim CS, Healy AR, Wernke KM, Wang Z, Frischling MC, Shine EE, Wang W, Herzon SB, Crawford JM. Structure elucidation of colibactin and its DNA cross-links. Science 2019; 365:science.aax2685. [PMID: 31395743 DOI: 10.1126/science.aax2685] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/24/2019] [Indexed: 12/18/2022]
Abstract
Colibactin is a complex secondary metabolite produced by some genotoxic gut Escherichia coli strains. The presence of colibactin-producing bacteria correlates with the frequency and severity of colorectal cancer in humans. However, because colibactin has not been isolated or structurally characterized, studying the physiological effects of colibactin-producing bacteria in the human gut has been difficult. We used a combination of genetics, isotope labeling, tandem mass spectrometry, and chemical synthesis to deduce the structure of colibactin. Our structural assignment accounts for all known biosynthetic and cell biology data and suggests roles for the final unaccounted enzymes in the colibactin gene cluster.
Collapse
Affiliation(s)
- Mengzhao Xue
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Chung Sub Kim
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Alan R Healy
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Zhixun Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | | - Emilee E Shine
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | - Weiwei Wang
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA.,W. M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT 06510, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA. .,Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
16
|
Perez CE, Crawford JM. Characterization of a Hybrid Nonribosomal Peptide–Carbohydrate Biosynthetic Pathway in Photorhabdus luminescens. Biochemistry 2019; 58:1131-1140. [DOI: 10.1021/acs.biochem.8b01120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Corey E. Perez
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| |
Collapse
|
17
|
Moodie LWK, Hubert M, Zhou X, Albers MF, Lundmark R, Wanrooij S, Hedberg C. Photoactivated Colibactin Probes Induce Cellular DNA Damage. Angew Chem Int Ed Engl 2018; 58:1417-1421. [DOI: 10.1002/anie.201812326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Madlen Hubert
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
| | - Xin Zhou
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | | - Richard Lundmark
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | - Sjoerd Wanrooij
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | |
Collapse
|
18
|
Moodie LWK, Hubert M, Zhou X, Albers MF, Lundmark R, Wanrooij S, Hedberg C. Photoactivated Colibactin Probes Induce Cellular DNA Damage. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Madlen Hubert
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
| | - Xin Zhou
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | | - Richard Lundmark
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | - Sjoerd Wanrooij
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | |
Collapse
|
19
|
Shine EE, Xue M, Patel JR, Healy AR, Surovtseva YV, Herzon SB, Crawford JM. Model Colibactins Exhibit Human Cell Genotoxicity in the Absence of Host Bacteria. ACS Chem Biol 2018; 13:3286-3293. [PMID: 30403848 DOI: 10.1021/acschembio.8b00714] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Colibactins are genotoxic secondary metabolites produced in select Enterobacteriaceae, which induce downstream DNA double-strand breaks (DSBs) in human cell lines and are thought to promote the formation of colorectal tumors. Although key structural and functional features of colibactins have been elucidated, the full molecular mechanisms regulating these phenotypes remain unknown. Here, we demonstrate that free model colibactins induce DSBs in human cell cultures and do not require delivery by host bacteria. Through domain-targeted editing, we demonstrate that a subset of native colibactins generated from observed module skipping in the nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS) biosynthetic assembly line share DNA alkylation phenotypes with the model colibactins in vitro. However, module skipping eliminates the strong DNA interstrand cross-links formed by the wild-type pathway in cell culture. This product diversification during the modular NRPS-PKS biosynthesis produces a family of metabolites with varying observed mechanisms of action (DNA alkylation versus cross-linking) in cell culture. The presence of membranes separating human cells from model colibactins attenuated genotoxicity, suggesting that membrane diffusion limits colibactin activity and could account for the reported bacterium-human cell-to-cell contact phenotype. Additionally, extracellular supplementation of the colibactin resistance protein ClbS was able to intercept colibactins in an Escherichia coli-human cell transient infection model. Our studies demonstrate that free model colibactins recapitulate cellular phenotypes associated with module-skipped products in the native colibactin pathway and define specific protein domains that are required for efficient DNA interstrand cross-linking in the native pathway.
Collapse
Affiliation(s)
- Emilee E. Shine
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Mengzhao Xue
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jaymin R. Patel
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
| | - Alan R. Healy
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yulia V. Surovtseva
- Yale Center for Molecular Discovery, West Haven, Connecticut 06516, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Jason M. Crawford
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
20
|
Xue M, Shine E, Wang W, Crawford JM, Herzon SB. Characterization of Natural Colibactin-Nucleobase Adducts by Tandem Mass Spectrometry and Isotopic Labeling. Support for DNA Alkylation by Cyclopropane Ring Opening. Biochemistry 2018; 57:6391-6394. [PMID: 30365310 DOI: 10.1021/acs.biochem.8b01023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Colibactins are genotoxic secondary metabolites whose biosynthesis is encoded in the clb gene cluster harbored by certain strains of gut commensal Escherichia coli. Using synthetic colibactin analogues, we previously provided evidence that colibactins alkylate DNA by addition of a nucleotide to an electrophilic cyclopropane intermediate. However, natural colibactin-nucleobase adducts have not been identified, to the best of our knowledge. Here we present the first identification of such adducts, derived from treatment of pUC19 DNA with clb + E. coli. Previous biosynthetic studies established cysteine and methionine as building blocks in colibactin biosynthesis; accordingly, we used cysteine (Δ cysE) and methionine (Δ metA) auxotrophic strains cultured in media supplemented with l-[U-13C]Cys or l-[U-13C]Met to facilitate the identification of nucleobases bound to colibactins. Using MS2 and MS3 analysis, in conjunction with the known oxidative instability of colibactin cyclopropane-opened products, we were able to characterize adenine adducts derived from cyclopropane ring opening. This study provides the first reported detection of nucleobase adducts derived from clb + E. coli and lends support to our earlier model suggesting DNA alkylation by addition of a nucleotide to an electrophilic cyclopropane.
Collapse
Affiliation(s)
- Mengzhao Xue
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Emilee Shine
- Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States.,Department of Microbial Pathogenesis , Yale University School of Medicine , New Haven , Connecticut 06536 , United States
| | - Weiwei Wang
- Department of Molecular Biophysics and Biochemistry , Yale University School of Medicine , P.O. Box 208114, New Haven , Connecticut 06520 , United States.,W. M. Keck Biotechnology Resource Laboratory , Yale University School of Medicine , 300 George Street , New Haven , Connecticut 06510 , United States
| | - Jason M Crawford
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States.,Department of Microbial Pathogenesis , Yale University School of Medicine , New Haven , Connecticut 06536 , United States
| | - Seth B Herzon
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States.,Department of Pharmacology , Yale University School of Medicine , New Haven , Connecticut 06520 , United States
| |
Collapse
|
21
|
Ochoa JL, Sanchez LM, Koo BM, Doherty JS, Rajendram M, Huang KC, Gross CA, Linington RG. Marine Mammal Microbiota Yields Novel Antibiotic with Potent Activity Against Clostridium difficile. ACS Infect Dis 2018; 4:59-67. [PMID: 29043783 DOI: 10.1021/acsinfecdis.7b00105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The recent explosion of research on the microbiota has highlighted the important interplay between commensal microorganisms and the health of their cognate hosts. Metabolites isolated from commensal bacteria have been demonstrated to possess a range of antimicrobial activities, and it is widely believed that some of these metabolites modulate host behavior, affecting predisposition to disease and pathogen invasion. Our access to the local marine mammal stranding network and previous successes in mining the fish microbiota poised us to test the hypothesis that the marine mammal microbiota is a novel source of commensal bacteria-produced bioactive metabolites. Examination of intestinal contents from five marine mammals led to the identification of a Micromonospora strain with potent and selective activity against a panel of Gram-positive pathogens and no discernible human cytotoxicity. Compound isolation afforded a new complex glycosylated polyketide, phocoenamicin, with potent activity against the intestinal pathogen Clostridium difficile, an organism challenging to treat in hospital settings. Use of our activity-profiling platform, BioMAP, clustered this metabolite with other known ionophore antibiotics. Fluorescence imaging and flow cytometry confirmed that phocoenamicin is capable of shifting membrane potential without damaging membrane integrity. Thus, exploration of gut microbiota in hosts from diverse environments can serve as a powerful strategy for the discovery of novel antibiotics against human pathogens.
Collapse
Affiliation(s)
- Jessica L. Ochoa
- Department of Chemistry
and Biochemistry, University of California Santa Cruz, 1156 High
Street, Santa Cruz, California 95064, United States
| | - Laura M. Sanchez
- Department of Chemistry
and Biochemistry, University of California Santa Cruz, 1156 High
Street, Santa Cruz, California 95064, United States
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Byoung-Mo Koo
- Department of Microbiology and Immunology, University of California San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Jennifer S. Doherty
- Department of Microbiology and Immunology, University of California San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Manohary Rajendram
- Department
of Bioengineering, Stanford University, Shriram Center for Bioengineering and Chemical Engineering, 443 Via Ortega, Stanford, California 94305, United States
| | - Kerwyn Casey Huang
- Department
of Bioengineering, Stanford University, Shriram Center for Bioengineering and Chemical Engineering, 443 Via Ortega, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine,299 Campus Drive, Stanford, California 94305, United States
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California San Francisco, 600 16th Street, San Francisco, California 94158, United States
| | - Roger G. Linington
- Department of Chemistry
and Biochemistry, University of California Santa Cruz, 1156 High
Street, Santa Cruz, California 95064, United States
- Department of Chemistry, Simon Fraser University, 8888
University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
22
|
Janata J, Kamenik Z, Gazak R, Kadlcik S, Najmanova L. Biosynthesis and incorporation of an alkylproline-derivative (APD) precursor into complex natural products. Nat Prod Rep 2018. [DOI: 10.1039/c7np00047b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review covers the biosynthetic and evolutionary aspects of lincosamide antibiotics, antitumour pyrrolobenzodiazepines (PBDs) and the quorum-sensing molecule hormaomycin.
Collapse
Affiliation(s)
- J. Janata
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - Z. Kamenik
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - R. Gazak
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - S. Kadlcik
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| | - L. Najmanova
- Institute of Microbiology
- Czech Academy of Sciences
- BIOCEV
- Vestec
- Czech Republic
| |
Collapse
|
23
|
Healy AR, Herzon SB. Molecular Basis of Gut Microbiome-Associated Colorectal Cancer: A Synthetic Perspective. J Am Chem Soc 2017; 139:14817-14824. [PMID: 28949546 DOI: 10.1021/jacs.7b07807] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A significant challenge toward studies of the human microbiota involves establishing causal links between bacterial metabolites and human health and disease states. Certain strains of commensal Escherichia coli harbor the 54-kb clb gene cluster which codes for small molecules named precolibactins and colibactins. Several studies suggest colibactins are genotoxins and support a role for clb metabolites in colorectal cancer formation. Significant advances toward elucidating the structures and biosynthesis of the precolibactins and colibactins have been made using genetic approaches, but their full structures remain unknown. In this Perspective we describe recent synthetic efforts that have leveraged biosynthetic advances and shed light on the mechanism of action of clb metabolites. These studies indicate that deletion of the colibactin peptidase ClbP, a modification introduced to promote accumulation of precolibactins, leads to the production of non-genotoxic pyridone-based isolates derived from the diversion of linear biosynthetic intermediates toward alternative cyclization pathways. Furthermore, these studies suggest the active genotoxins (colibactins) are unsaturated imines that are potent DNA damaging agents, thereby confirming an earlier mechanism of action hypothesis. Although these imines have very recently been detected in bacterial extracts, they have to date confounded isolation. As the power of "meta-omics" approaches to natural products discovery further advance, we anticipate that chemical synthetic and biosynthetic studies will become increasingly interdependent.
Collapse
Affiliation(s)
- Alan R Healy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
24
|
Abstract
Covering: up to 2017.Natural products are important secondary metabolites produced by bacterial and fungal species that play important roles in cellular growth and signaling, nutrient acquisition, intra- and interspecies communication, and virulence. A subset of natural products is produced by nonribosomal peptide synthetases (NRPSs), a family of large, modular enzymes that function in an assembly line fashion. Because of the pharmaceutical activity of many NRPS products, much effort has gone into the exploration of their biosynthetic pathways and the diverse products they make. Many interesting NRPS pathways have been identified and characterized from both terrestrial and marine bacterial sources. Recently, several NRPS pathways in human commensal bacterial species have been identified that produce molecules with antibiotic activity, suggesting another source of interesting NRPS pathways may be the commensal and pathogenic bacteria that live on the human body. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) have been identified as a significant cause of human bacterial infections that are frequently multidrug resistant. The emerging resistance profile of these organisms has prompted calls from multiple international agencies to identify novel antibacterial targets and develop new approaches to treat infections from ESKAPE pathogens. Each of these species contains several NRPS biosynthetic gene clusters. While some have been well characterized and produce known natural products with important biological roles in microbial physiology, others have yet to be investigated. This review catalogs the NRPS pathways of ESKAPE pathogens. The exploration of novel NRPS products may lead to a better understanding of the chemical communication used by human pathogens and potentially to the discovery of novel therapeutic approaches.
Collapse
Affiliation(s)
- Andrew M Gulick
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
25
|
Abstract
Covering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal-microbe symbiosis studies and plant-microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal-microbe symbioses. However, much less is known about microbe-microbe systems involving interspecies interactions. Microbe-derived small molecules (i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from "orphan", or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in "omics" technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.
Collapse
Affiliation(s)
- Navid Adnani
- University of Wisconsin Madison, School of Pharmacy, Div. of Pharmaceutical Sciences, 777 Highland Ave., Madison, WI 53705-2222, USA.
| | | | | |
Collapse
|
26
|
Trautman EP, Healy AR, Shine EE, Herzon SB, Crawford JM. Domain-Targeted Metabolomics Delineates the Heterocycle Assembly Steps of Colibactin Biosynthesis. J Am Chem Soc 2017; 139:4195-4201. [PMID: 28240912 DOI: 10.1021/jacs.7b00659] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) comprise giant multidomain enzymes responsible for the "assembly line" biosynthesis of many genetically encoded small molecules. Site-directed mutagenesis, protein biochemical, and structural studies have focused on elucidating the catalytic mechanisms of individual multidomain proteins and protein domains within these megasynthases. However, probing their functions at the cellular level typically has invoked the complete deletion (or overexpression) of multidomain-encoding genes or combinations of genes and comparing those mutants with a control pathway. Here we describe a "domain-targeted" metabolomic strategy that combines genome editing with pathway analysis to probe the functions of individual PKS and NRPS catalytic domains at the cellular metabolic level. We apply the approach to the bacterial colibactin pathway, a genotoxic NRPS-PKS hybrid pathway found in certain Escherichia coli. The pathway produces precolibactins, which are converted to colibactins by a dedicated peptidase, ClbP. Domain-targeted metabolomics enabled the characterization of "multidomain signatures", or functional readouts of NRPS-PKS domain contributions to the pathway-dependent metabolome. These multidomain signatures provided experimental support for individual domain contributions to colibactin biosynthesis and delineated the assembly line timing events of colibactin heterocycle formation. The analysis also led to the structural characterization of two reactive precolibactin metabolites. We demonstrate the fate of these reactive intermediates in the presence and absence of ClbP, which dictates the formation of distinct product groups resulting from alternative cyclization cascades. In the presence of the peptidase, the reactive intermediates are converted to a known genotoxic scaffold, providing metabolic support of our mechanistic model for colibactin-induced genotoxicity. Domain-targeted metabolomics could be more widely used to characterize NRPS-PKS pathways with unprecedented genetic and metabolic precision.
Collapse
Affiliation(s)
- Eric P Trautman
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Alan R Healy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Emilee E Shine
- Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine , New Haven, Connecticut 06520, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States
| |
Collapse
|
27
|
Garg N, Luzzatto-Knaan T, Melnik AV, Caraballo-Rodríguez AM, Floros DJ, Petras D, Gregor R, Dorrestein PC, Phelan VV. Natural products as mediators of disease. Nat Prod Rep 2017; 34:194-219. [PMID: 27874907 PMCID: PMC5299058 DOI: 10.1039/c6np00063k] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2016Humans are walking microbial ecosystems, each harboring a complex microbiome with the genetic potential to produce a vast array of natural products. Recent sequencing data suggest that our microbial inhabitants are critical for maintaining overall health. Shifts in microbial communities have been correlated to a number of diseases including infections, inflammation, cancer, and neurological disorders. Some of these clinically and diagnostically relevant phenotypes are a result of the presence of small molecules, yet we know remarkably little about their contributions to the health of individuals. Here, we review microbe-derived natural products as mediators of human disease.
Collapse
Affiliation(s)
- Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | | | - Dimitrios J. Floros
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Rachel Gregor
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Vanessa V. Phelan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
28
|
Covington BC, McLean JA, Bachmann BO. Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat Prod Rep 2017; 34:6-24. [PMID: 27604382 PMCID: PMC5214543 DOI: 10.1039/c6np00048g] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2000 to 2016The labor-intensive process of microbial natural product discovery is contingent upon identifying discrete secondary metabolites of interest within complex biological extracts, which contain inventories of all extractable small molecules produced by an organism or consortium. Historically, compound isolation prioritization has been driven by observed biological activity and/or relative metabolite abundance and followed by dereplication via accurate mass analysis. Decades of discovery using variants of these methods has generated the natural pharmacopeia but also contributes to recent high rediscovery rates. However, genomic sequencing reveals substantial untapped potential in previously mined organisms, and can provide useful prescience of potentially new secondary metabolites that ultimately enables isolation. Recently, advances in comparative metabolomics analyses have been coupled to secondary metabolic predictions to accelerate bioactivity and abundance-independent discovery work flows. In this review we will discuss the various analytical and computational techniques that enable MS-based metabolomic applications to natural product discovery and discuss the future prospects for comparative metabolomics in natural product discovery.
Collapse
Affiliation(s)
- Brett C Covington
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA.
| | - John A McLean
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA. and Center for Innovative Technology, Vanderbilt University, 5401 Stevenson Center, Nashville, TN 37235, USA
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, TN 37235, USA.
| |
Collapse
|
29
|
Healy AR, Nikolayevskiy H, Patel JR, Crawford JM, Herzon SB. A Mechanistic Model for Colibactin-Induced Genotoxicity. J Am Chem Soc 2016; 138:15563-15570. [PMID: 27934011 DOI: 10.1021/jacs.6b10354] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Precolibactins and colibactins represent a family of natural products that are encoded by the clb gene cluster and are produced by certain commensal, extraintestinal, and probiotic E. coli. clb+ E. coli induce megalocytosis and DNA double-strand breaks in eukaryotic cells, but paradoxically, this gene cluster is found in the probiotic Nissle 1917. Evidence suggests precolibactins are converted to genotoxic colibactins by colibactin peptidase (ClbP)-mediated cleavage of an N-acyl-d-Asn side chain, and all isolation efforts have employed ΔclbP strains to facilitate accumulation of precolibactins. It was hypothesized that colibactins form unsaturated imines that alkylate DNA by cyclopropane ring opening (2 → 3). However, as no colibactins have been isolated, this hypothesis has not been tested experimentally. Additionally, precolibactins A-C (7-9) contain a pyridone that cannot generate the unsaturated imines that form the basis of this hypothesis. To resolve this, we prepared 13 synthetic colibactin derivatives and evaluated their DNA binding and alkylation activity. We show that unsaturated imines, but not the corresponding pyridone derivatives, potently alkylate DNA. The imine, unsaturated lactam, and cyclopropane are essential for efficient DNA alkylation. A cationic residue enhances activity. These studies suggest that precolibactins containing a pyridone are not responsible for the genotoxicity of the clb cluster. Instead, we propose that these are off-pathway fermentation products produced by a facile double cyclodehydration route that manifests in the absence of viable ClbP. The results presented herein provide a foundation to begin to connect metabolite structure with the disparate phenotypes associated with clb+ E. coli.
Collapse
Affiliation(s)
- Alan R Healy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Herman Nikolayevskiy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Jaymin R Patel
- Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Molecular, Cellular, and Developmental Biology, Yale University , New Haven, Connecticut 06520, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
30
|
Healy AR, Vizcaino MI, Crawford JM, Herzon SB. Convergent and Modular Synthesis of Candidate Precolibactins. Structural Revision of Precolibactin A. J Am Chem Soc 2016; 138:5426-32. [PMID: 27025153 PMCID: PMC5049697 DOI: 10.1021/jacs.6b02276] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The colibactins are hybrid polyketide-nonribosomal peptide natural products produced by certain strains of commensal and extraintestinal pathogenic Escherichia coli. The metabolites are encoded by the clb gene cluster as prodrugs termed precolibactins. clb(+) E. coli induce DNA double-strand breaks in mammalian cells in vitro and in vivo and are found in 55-67% of colorectal cancer patients, suggesting that mature colibactins could initiate tumorigenesis. However, elucidation of their structures has been an arduous task as the metabolites are obtained in vanishingly small quantities (μg/L) from bacterial cultures and are believed to be unstable. Herein we describe a flexible and convergent synthetic route to prepare advanced precolibactins and derivatives. The synthesis proceeds by late-stage union of two complex precursors (e.g., 28 + 17 → 29a, 90%) followed by a base-induced double dehydrative cascade reaction to form two rings of the targets (e.g., 29a → 30a, 79%). The sequence has provided quantities of advanced candidate precolibactins that exceed those obtained by fermentation, and is envisioned to be readily scaled. These studies have guided a structural revision of the predicted metabolite precolibactin A (from 5a or 5b to 7) and have confirmed the structures of the isolated metabolites precolibactins B (3) and C (6). Synthetic precolibactin C (6) was converted to N-myristoyl-d-asparagine and its corresponding colibactin by colibactin peptidase ClbP. The synthetic strategy outlined herein will facilitate mechanism of action and structure-function studies of these fascinating metabolites, and is envisioned to accommodate the synthesis of additional (pre)colibactins as they are isolated.
Collapse
Affiliation(s)
- Alan R. Healy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Maria I. Vizcaino
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|