1
|
Shen N, Shao Z, Xin H, Che F, Cui Y. Exploring TβRI inhibitors from Arenaria kansuensis based on 3D-QSAR, molecular docking and molecular dynamics simulation methods and its anti-pulmonary fibrosis molecular mechanism validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118788. [PMID: 39245240 DOI: 10.1016/j.jep.2024.118788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a kind of interstitial lung disease that seriously threatens human life and health. Up to now, there is no specifically therapeutic drug. Arenaria kansuensis, a typical Tibetan medicine, has been previously proved to have anti-PF pharmacological activity by our group. However, the specific target and molecular mechanism of pharmacological active ingredients from it are still unknown. AIM OF THE STUDY This study aimed to explore the molecular mechanism and specific target of pharmacological active ingredients from A. kansuensis for treating PF. MATERIALS AND METHODS Virtual screening including 3D-QSAR, molecular docking and molecular dynamics simulation were used to screen TβRI inhibitor. CETSA experiment was used to verify the interaction between GAK (a β-carboline alkaloid isolated from A. kansuensis) and TβRI. Cell and molecular experiments including observation of cell morphology and Western blot were applied to investigate the molecular mechanism of action of GAK for treating PF. Animal experiments including physiological index, immunohistochemistry and ELISA were used to comprehensively evaluate the anti-PF effect of GAK and explore the corresponding mechanism of action. RESULTS Results of 3D-QSAR experiment indicated that GAK is a much stronger potential TβRI inhibitor, molecular mechanism study showed that 30 μM GAK could significantly keep TβRI more stable which indicated that the direct binding interaction between GAK and TβRI, it targetedly inhibited TβRI through forming hydrogen bonds with LYS232, SER280 and ASP351 and the binding energies is -56.05 kcal/mol. In vitro experiment showed GAK could suppress downstream signal pathways of TβRI including MAPK, PI3K/AKT and NF-κB pathways during EMT process. In vivo experiment showed that GAK could improve the survival rate and body weight of PF mice, alleviate the symptoms of histopathological severity, inflammatory cell infiltration and collagen deposition in lung tissue of PF mice through inhibiting EMT process of PF. CONCLUSIONS This work not only provided evidence to support GAK as a novel TβRI inhibitor for treating PF through multiple pathways, but also reveal the specific target and molecular mechanism of β-carboline alkaloids from A. kansuensis for treating PF.
Collapse
Affiliation(s)
- Na Shen
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Ziyao Shao
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Fengyuan Che
- Linyi People's Hospital, Linyi, 276000, Shandong, China.
| | - Yulei Cui
- School of Medicine, Linyi University, Linyi, 276000, Shandong, China; Linyi People's Hospital, Linyi, 276000, Shandong, China.
| |
Collapse
|
2
|
Wang H, Zheng Y, Yang M, Wang L, Xu Y, You S, Mao N, Fan J, Ren S. Gut microecology: effective targets for natural products to modulate uric acid metabolism. Front Pharmacol 2024; 15:1446776. [PMID: 39263572 PMCID: PMC11387183 DOI: 10.3389/fphar.2024.1446776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Gut microecology,the complex community consisting of microorganisms and their microenvironments in the gastrointestinal tract, plays a vital role in maintaining overall health and regulating various physiological and pathological processes. Recent studies have highlighted the significant impact of gut microecology on the regulation of uric acid metabolism. Natural products, including monomers, extracts, and traditional Chinese medicine formulations derived from natural sources such as plants, animals, and microorganisms, have also been investigated for their potential role in modulating uric acid metabolism. According to research, The stability of gut microecology is a crucial link for natural products to maintain healthy uric acid metabolism and reduce hyperuricemia-related diseases. Herein, we review the recent advanced evidence revealing the bidirectional regulation between gut microecology and uric acid metabolism. And separately summarize the key evidence of natural extracts and herbal formulations in regulating both aspects. In addition,we elucidated the important mechanisms of natural products in regulating uric acid metabolism and secondary diseases through gut microecology, especially by modulating the composition of gut microbiota, gut mucosal barrier, inflammatory response, purine catalyzation, and associated transporters. This review may offer a novel insight into uric acid and its associated disorders management and highlight a perspective for exploring its potential therapeutic drugs from natural products.
Collapse
Affiliation(s)
- Hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengfan Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Xu
- Chengdu Medical College, Chengdu, China
| | - Siqi You
- Chengdu Medical College, Chengdu, China
| | - Nan Mao
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junming Fan
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Sichong Ren
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- TCM Preventative Treatment Research Center of Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Maghsoud Y, Dong C, Cisneros GA. Investigation of the Inhibition Mechanism of Xanthine Oxidoreductase by Oxipurinol: A Computational Study. J Chem Inf Model 2023; 63:4190-4206. [PMID: 37319436 PMCID: PMC10405278 DOI: 10.1021/acs.jcim.3c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Xanthine oxidoreductase (XOR) is an enzyme found in various organisms. It converts hypoxanthine to xanthine and urate, which are crucial steps in purine elimination in humans. Elevated uric acid levels can lead to conditions like gout and hyperuricemia. Therefore, there is significant interest in developing drugs that target XOR for treating these conditions and other diseases. Oxipurinol, an analogue of xanthine, is a well-known inhibitor of XOR. Crystallographic studies have revealed that oxipurinol directly binds to the molybdenum cofactor (MoCo) in XOR. However, the precise details of the inhibition mechanism are still unclear, which would be valuable for designing more effective drugs with similar inhibitory functions. In this study, molecular dynamics and quantum mechanics/molecular mechanics calculations are employed to investigate the inhibition mechanism of XOR by oxipurinol. The study examines the structural and dynamic effects of oxipurinol on the pre-catalytic structure of the metabolite-bound system. Our results provide insights on the reaction mechanism catalyzed by the MoCo center in the active site, which aligns well with experimental findings. Furthermore, the results provide insights into the residues surrounding the active site and propose an alternative mechanism for developing alternative covalent inhibitors.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chao Dong
- Department of Chemistry and Physics, The University of Texas Permian Basin, Odessa, Texas 79762, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
4
|
Maghsoud Y, Dong C, Cisneros GA. Computational Characterization of the Inhibition Mechanism of Xanthine Oxidoreductase by Topiroxostat. ACS Catal 2023; 13:6023-6043. [PMID: 37547543 PMCID: PMC10399974 DOI: 10.1021/acscatal.3c01245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Xanthine oxidase (XO) is a member of the molybdopterin-containing enzyme family. It interconverts xanthine to uric acid as the last step of purine catabolism in the human body. The high uric acid concentration in the blood directly leads to human diseases like gout and hyperuricemia. Therefore, drugs that inhibit the biosynthesis of uric acid by human XO have been clinically used for many years to decrease the concentration of uric acid in the blood. In this study, the inhibition mechanism of XO and a new promising drug, topiroxostat (code: FYX-051), is investigated by employing molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) calculations. This drug has been reported to act as both a noncovalent and covalent inhibitor and undergoes a stepwise inhibition by all its hydroxylated metabolites, which include 2-hydroxy-FYX-051, dihydroxy-FYX-051, and trihydroxy-FYX-051. However, the detailed mechanism of inhibition of each metabolite remains elusive and can be useful for designing more effective drugs with similar inhibition functions. Hence, herein we present the computational investigation of the structural and dynamical effects of FYX-051 and the calculated reaction mechanism for all of the oxidation steps catalyzed by the molybdopterin center in the active site. Calculated results for the proposed reaction mechanisms for each metabolite's inhibition reaction in the enzyme's active site, binding affinities, and the noncovalent interactions with the surrounding amino acid residues are consistent with previously reported experimental findings. Analysis of the noncovalent interactions via energy decomposition analysis (EDA) and noncovalent interaction (NCI) techniques suggests that residues L648, K771, E802, R839, L873, R880, R912, F914, F1009, L1014, and A1079 can be used as key interacting residues for further hybrid-type inhibitor development.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chao Dong
- Department of Chemistry and Physics, The University of Texas Permian Basin, Odessa, Texas 79762, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States; Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
5
|
MOZART, a QSAR Multi-Target Web-Based Tool to Predict Multiple Drug-Enzyme Interactions. Molecules 2023; 28:molecules28031182. [PMID: 36770857 PMCID: PMC9921108 DOI: 10.3390/molecules28031182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Developing models able to predict interactions between drugs and enzymes is a primary goal in computational biology since these models may be used for predicting both new active drugs and the interactions between known drugs on untested targets. With the compilation of a large dataset of drug-enzyme pairs (62,524), we recognized a unique opportunity to attempt to build a novel multi-target machine learning (MTML) quantitative structure-activity relationship (QSAR) model for probing interactions among different drugs and enzyme targets. To this end, this paper presents an MTML-QSAR model based on using the features of topological drugs together with the artificial neural network (ANN) multi-layer perceptron (MLP). Validation of the final best model found was carried out by internal cross-validation statistics and other relevant diagnostic statistical parameters. The overall accuracy of the derived model was found to be higher than 96%. Finally, to maximize the diffusion of this model, a public and accessible tool has been developed to allow users to perform their own predictions. The developed web-based tool is public accessible and can be downloaded as free open-source software.
Collapse
|
6
|
Daoui O, Elkhattabi S, Chtita S. Rational design of novel pyridine-based drugs candidates for lymphoma therapy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Zhao Y, Yang H, Wu F, Luo X, Sun Q, Feng W, Ju X, Liu G. Exploration of N-Arylsulfonyl-indole-2-carboxamide Derivatives as Novel Fructose-1,6-bisphosphatase Inhibitors by Molecular Simulation. Int J Mol Sci 2022; 23:ijms231810259. [PMID: 36142164 PMCID: PMC9499002 DOI: 10.3390/ijms231810259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
A series of N-arylsulfonyl-indole-2-carboxamide derivatives have been identified as potent fructose-1,6-bisphosphatase (FBPase) inhibitors (FBPIs) with excellent selectivity for the potential therapy of type II diabetes mellitus. To explore the structure–activity relationships (SARs) and the mechanisms of action of these FBPIs, a systematic computational study was performed in the present study, including three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling, pharmacophore modeling, molecular dynamics (MD), and virtual screening. The constructed 3D-QSAR models exhibited good predictive ability with reasonable parameters using comparative molecular field analysis (q2 = 0.709, R2 = 0.979, rpre2 = 0.932) and comparative molecular similarity indices analysis (q2 = 0.716, R2 = 0.978, rpre2 = 0.890). Twelve hit compounds were obtained by virtual screening using the best pharmacophore model in combination with molecular dockings. Three compounds with relatively higher docking scores and better ADME properties were then selected for further studies by docking and MD analyses. The docking results revealed that the amino acid residues Met18, Gly21, Gly26, Leu30, and Thr31 at the binding site were of great importance for the effective bindings of these FBPIs. The MD results indicated that the screened compounds VS01 and VS02 could bind with FBPase stably as its cognate ligand in dynamic conditions. This work identified several potential FBPIs by modeling studies and might provide important insights into developing novel FBPIs.
Collapse
Affiliation(s)
- Yilan Zhao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Honghao Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qi Sun
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
| | - Weiliang Feng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (W.F.); (G.L.)
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (W.F.); (G.L.)
| |
Collapse
|
8
|
Zhai N, Wang C, Wu F, Xiong L, Luo X, Ju X, Liu G. Exploration of Novel Xanthine Oxidase Inhibitors Based on 1,6-Dihydropyrimidine-5-Carboxylic Acids by an Integrated in Silico Study. Int J Mol Sci 2021; 22:8122. [PMID: 34360886 PMCID: PMC8348919 DOI: 10.3390/ijms22158122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Xanthine oxidase (XO) is an important target for the effective treatment of hyperuricemia-associated diseases. A series of novel 2-substituted 6-oxo-1,6-dihydropyrimidine-5-carboxylic acids (ODCs) as XO inhibitors (XOIs) with remarkable activities have been reported recently. To better understand the key pharmacological characteristics of these XOIs and explore more hit compounds, in the present study, the three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, pharmacophore modeling, and molecular dynamics (MD) studies were performed on 46 ODCs. The constructed 3D-QSAR models exhibited reliable predictability with satisfactory validation parameters, including q2 = 0.897, R2 = 0.983, rpred2 = 0.948 in a CoMFA model, and q2 = 0.922, R2 = 0.990, rpred2 = 0.840 in a CoMSIA model. Docking and MD simulations further gave insights into the binding modes of these ODCs with the XO protein. The results indicated that key residues Glu802, Arg880, Asn768, Thr1010, Phe914, and Phe1009 could interact with ODCs by hydrogen bonds, π-π stackings, or hydrophobic interactions, which might be significant for the activity of these XOIs. Four potential hits were virtually screened out using the constructed pharmacophore model in combination with molecular dockings and ADME predictions. The four hits were also found to be relatively stable in the binding pocket by MD simulations. The results in this study might provide effective information for the design and development of novel XOIs.
Collapse
Affiliation(s)
- Na Zhai
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Chenchen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Liwei Xiong
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| |
Collapse
|
9
|
Sippl W, Ntie-Kang F. Editorial to Special Issue-"Structure-Activity Relationships (SAR) of Natural Products". Molecules 2021; 26:E250. [PMID: 33418945 PMCID: PMC7825126 DOI: 10.3390/molecules26020250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
The topic of structure-activity-relationships (SAR) has recently drawn a lot of attention, and there is increasing interest in natural products (NPs) as a "source of inspiration" for the discovery of new lead compounds [...].
Collapse
Affiliation(s)
- Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06122 Halle, Germany;
| | - Fidele Ntie-Kang
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06122 Halle, Germany;
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea CM-00237, Cameroon
- Institute of Botany, Technical University of Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| |
Collapse
|
10
|
Ribeiro PMG, Fernandes HS, Maia LB, Sousa SF, Moura JJG, Cerqueira NMFSA. The complete catalytic mechanism of xanthine oxidase: a computational study. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01029d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this article, quantum mechanical/molecular mechanical (QM/MM) methods were used to study the full catalytic mechanism of xanthine oxidase (XO).
Collapse
Affiliation(s)
- Pedro M. G. Ribeiro
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - Henrique S. Fernandes
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - Luísa B. Maia
- LAQV
- REQUIMTE
- NOVA School of Science and Technology
- Campus de Caparica
- 2829-516 Caparica
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - José J. G. Moura
- LAQV
- REQUIMTE
- NOVA School of Science and Technology
- Campus de Caparica
- 2829-516 Caparica
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| |
Collapse
|
11
|
Abdizadeh R, Heidarian E, Hadizadeh F, Abdizadeh T. Investigation of pyrimidine analogues as xanthine oxidase inhibitors to treat of hyperuricemia and gout through combined QSAR techniques, molecular docking and molecular dynamics simulations. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Zhao J, Huang L, Sun C, Zhao D, Tang H. Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods and molecular simulations. Food Chem 2020; 323:126807. [PMID: 32330646 DOI: 10.1016/j.foodchem.2020.126807] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
In this study, some flavonoids were screened as potent xanthine oxidase (XO) inhibitors in vitro. Flavonoid 9 was demonstrated to exhibit the inhibitory activity through a ping-pong mechanism. Further structure-activity relationship revealed that different structural elements had greatly influenced the inhibition effect on XO and underlined the requirement of hydroxyl groups at C5 and C4' of flavonoid type I. Moreover, some bioactive flavonoids could efficiently quench the intrinsic fluorescence of XO by either static or static-dynamic mixed mechanism. The synchronous fluorescence, ANS-binding fluorescence, Fourier transform infrared spectra and circular dichroism suggested that active flavonoids could bind to the active center of XO, prevent the entrance of substrate, and induce the rearrangement and conformation change of its secondary structures, ultimately resulting in the significant inhibition effect. Additionally, molecular docking further confirmed these conclusions and highlighted the great importance of hydrophobic interactions and hydrogen bonds for the formation of stable complex conformation.
Collapse
Affiliation(s)
- Jie Zhao
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Lin Huang
- Blood Purification Center, Affiliated Yijishan Hospital of Wannan Medical College, Wuhu 241001, PR China
| | - Chunyong Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Dongsheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Hongjin Tang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
13
|
Ullrich CI, Aloni R, Saeed MEM, Ullrich W, Efferth T. Comparison between tumors in plants and human beings: Mechanisms of tumor development and therapy with secondary plant metabolites. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153081. [PMID: 31568956 DOI: 10.1016/j.phymed.2019.153081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Human tumors are still a major threat to human health and plant tumors negatively affect agricultural yields. Both areas of research are developing largely independent of each other. Treatment of both plant and human tumors remains unsatisfactory and novel therapy options are urgently needed. HYPOTHESIS The concept of this paper is to compare cellular and molecular mechanisms of tumor development in plants and human beings and to explore possibilities to develop novel treatment strategies based on bioactive secondary plant metabolites. The interdisciplinary discourse may unravel commonalities and differences in the biology of plant and human tumors as basis for rational drug development. RESULTS Plant tumors and galls develop upon infection by bacteria (e.g. Agrobacterium tumefaciens and A. vitis, which harbor oncogenic T-DNA) and by insects (e.g. gall wasps, aphids). Plant tumors are benign, i.e. they usually do not ultimately kill their host, but they can lead to considerable economic damage due to reduced crop yields of cultivated plants. Human tumors develop by biological carcinogenesis (i.e. viruses and other infectious agents), chemical carcinogenesis (anthropogenic and non-anthropogenic environmental toxic xenobiotics) and physical carcinogenesis (radioactivity, UV-radiation). The majority of human tumors are malignant with lethal outcome. Although treatments for both plant and human tumors are available (antibiotics and apathogenic bacterial strains for plant tumors, cytostatic drugs for human tumors), treatment successes are non-satisfactory, because of drug resistance and the severe adverse side effects. In human beings, attacks by microbes are repelled by cellular immunity (i.e. innate and acquired immune systems). Plants instead display chemical defense mechanisms, whereby constitutively expressed phytoanticipin compounds compare to the innate human immune system, the acquired human immune system compares to phytoalexins, which are induced by appropriate biotic or abiotic stressors. Some chemical weapons of this armory of secondary metabolites are also active against plant galls. There is a mutual co-evolution between plant defense and animals/human beings, which was sometimes referred to as animal plant warfare. As a consequence, hepatic phase I-III metabolization and excretion developed in animals and human beings to detoxify harmful phytochemicals. On the other hand, plants invented "pro-drugs" during evolution, which are activated and toxified in animals by this hepatic biotransformation system. Recent efforts focus on phytochemicals that specifically target tumor-related mechanisms and proteins, e.g. angiogenic or metastatic inhibitors, stimulators of the immune system to improve anti-tumor immunity, specific cell death or cancer stem cell inhibitors, inhibitors of DNA damage and epigenomic deregulation, specific inhibitors of driver genes of carcinogenesis (e.g. oncogenes), inhibitors of multidrug resistance (i.e. ABC transporter efflux inhibitors), secondary metabolites against plant tumors. CONCLUSION The exploitation of bioactive secondary metabolites to treat plant or human tumors bears a tremendous therapeutic potential. Although there are fundamental differences between human and plant tumors, either isolated phytochemicals and their (semi)synthetic derivatives or chemically defined and standardized plant extracts may offer new therapy options to decrease human tumor incidence and mortality as well as to increase agricultural yields by fighting crown galls.
Collapse
Affiliation(s)
- Cornelia I Ullrich
- Department of Biology, Darmstadt University of Technology, Schnittspahnstr. 3-5, Darmstadt 64287, Germany
| | - Roni Aloni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany
| | - Wolfram Ullrich
- Department of Biology, Darmstadt University of Technology, Schnittspahnstr. 3-5, Darmstadt 64287, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz 55128, Germany.
| |
Collapse
|