1
|
De Rosa L, Di Stasi R, Fusco V, D'Andrea LD. AXL receptor as an emerging molecular target in colorectal cancer. Drug Discov Today 2024; 29:104005. [PMID: 38685399 DOI: 10.1016/j.drudis.2024.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
AXL receptor tyrosine kinase (AXL) is a receptor tyrosine kinase whose aberrant expression has recently been associated with colorectal cancer (CRC), contributing to tumor growth, epithelial-mesenchymal transition (EMT), increased invasiveness, metastatic spreading, and the development of drug resistance. In this review we summarize preclinical data, the majority of which are limited to recent years, convincingly linking the AXL receptor to CRC. These findings support the value of targeting AXL with molecules in drug discovery, offering novel and advanced therapeutic or diagnostic tools for CRC management.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy.
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy
| | - Virginia Fusco
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy
| | - Luca D D'Andrea
- Istituto di Scienze e Tecnologie Chimiche 'G. Natta', CNR, via M. Bianco, 9 - 20131 Milan, Italy.
| |
Collapse
|
2
|
Fang F, Dai Y, Wang H, Ji Y, Liang X, Peng X, Li J, Zhao Y, Li C, Wang D, Li Y, Zhang D, Zhang D, Geng M, Liu H, Ai J, Zhou Y. Structure-based drug discovery of novel fused-pyrazolone carboxamide derivatives as potent and selective AXL inhibitors. Acta Pharm Sin B 2023; 13:4918-4933. [PMID: 38045061 PMCID: PMC10692477 DOI: 10.1016/j.apsb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023] Open
Abstract
As a novel and promising antitumor target, AXL plays an important role in tumor growth, metastasis, immunosuppression and drug resistance of various malignancies, which has attracted extensive research interest in recent years. In this study, by employing the structure-based drug design and bioisosterism strategies, we designed and synthesized in total 54 novel AXL inhibitors featuring a fused-pyrazolone carboxamide scaffold, of which up to 20 compounds exhibited excellent AXL kinase and BaF3/TEL-AXL cell viability inhibitions. Notably, compound 59 showed a desirable AXL kinase inhibitory activity (IC50: 3.5 nmol/L) as well as good kinase selectivity, and it effectively blocked the cellular AXL signaling. In turn, compound 59 could potently inhibit BaF3/TEL-AXL cell viability (IC50: 1.5 nmol/L) and significantly suppress GAS6/AXL-mediated cancer cell invasion, migration and wound healing at the nanomolar level. More importantly, compound 59 oral administration showed good pharmacokinetic profile and in vivo antitumor efficiency, in which we observed significant AXL phosphorylation suppression, and its antitumor efficacy at 20 mg/kg (qd) was comparable to that of BGB324 at 50 mg/kg (bid), the most advanced AXL inhibitor. Taken together, this work provided a valuable lead compound as a potential AXL inhibitor for the further antitumor drug development.
Collapse
Affiliation(s)
| | - Yang Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao Wang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinchun Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiyuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yangrong Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danyi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yu Zhou
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
3
|
Yang JCH, Su WC, Chiu CH, Shiah HS, Lee KY, Hsia TC, Uno M, Crawford N, Terakawa H, Chen WC, Takayama G, Hsu C, Hong Y, Saintilien C, McGill J, Chang GC. Evaluation of combination treatment with DS-1205c, an AXL kinase inhibitor, and osimertinib in metastatic or unresectable EGFR-mutant non-small cell lung cancer: results from a multicenter, open-label phase 1 study. Invest New Drugs 2023; 41:306-316. [PMID: 36892745 PMCID: PMC10140009 DOI: 10.1007/s10637-023-01341-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
The objective of this study was to evaluate the safety and tolerability of DS-1205c, an oral AXL-receptor inhibitor, in combination with osimertinib in metastatic or unresectable EFGR-mutant non-small cell lung cancer (NSCLC) patients who developed disease progression during EGFR tyrosine kinase inhibitor (TKI) treatment. An open-label, non-randomized phase 1 study was conducted in Taiwan, in which 13 patients received DS-1205c monotherapy at a dosage of 200, 400, 800, or 1200 mg twice daily for 7 days, followed by combination treatment with DS-1205c (same doses) plus osimertinib 80 mg once daily in 21-day cycles. Treatment continued until disease progression or other discontinuation criteria were met. At least one treatment-emergent adverse event (TEAE) was reported in all 13 patients treated with DS-1205c plus osimertinib; with ≥ 1 grade 3 TEAE in 6 patients (one of whom also had a grade 4 increased lipase level), and 6 patients having ≥ 1 serious TEAE. Eight patients experienced ≥ 1 treatment-related AE (TRAE). The most common (2 cases each) were anemia, diarrhea, fatigue, increased AST, increased ALT, increased blood creatinine phosphokinase, and increased lipase. All TRAEs were non-serious, with the exception of an overdose of osimertinib in 1 patient. No deaths were reported. Two-thirds of patients achieved stable disease (one-third for > 100 days), but none achieved a complete or partial response. No association between AXL positivity in tumor tissue and clinical efficacy was observed. DS-1205c was well-tolerated with no new safety signals in patients with advanced EGFR-mutant NSCLC when administered in combination with the EFGR TKI osimertinib. ClinicalTrials.gov ; NCT03255083.
Collapse
Affiliation(s)
- James Chih-Hsin Yang
- National Taiwan University Cancer Center, No. 57, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist., Taipei City, 106, Taiwan.
| | - Wu-Chou Su
- National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chao-Hua Chiu
- Taipei Cancer Center and Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Her-Shyong Shiah
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kang-Yun Lee
- Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | - Te-Chun Hsia
- China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | - Ching Hsu
- Daiichi Sankyo Inc., Basking Ridge, NJ, USA
| | - Ying Hong
- Daiichi Sankyo Inc., Basking Ridge, NJ, USA
| | | | | | - Gee-Chen Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Sun ZG, Li ZN, Zhang JM, Hou XY, Yeh SM, Ming X. Recent Development of Flavonoids with Various Activities. Curr Top Med Chem 2022; 22:305-329. [PMID: 35040404 DOI: 10.2174/1568026622666220117111858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Flavonoids, a series of compounds with C6-C3-C6 structure, mostly originate from plant metabolism. Flavonoids have shown beneficial effects on many aspects of human physiology and health. Recently, many flavonoids with various activities have been discovered, which has led to more and more studies focusing on their physiological and pharmacodynamic activities. The anti-cancer and anti-viral activities especially have attracted the attention of many researchers. Therefore, the discovery and development of flavonoids as anti-disease drugs has great potential and may make significant contribution to fighting diseases. This review focus on the discovery and development of flavonoids in medicinal chemistry in recent years.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhi-Na Li
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
| | - Jin-Mai Zhang
- Room 205, BIO-X white house, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, P.R. China
| | - Xiao-Yan Hou
- Qilu Pharmaceutical Co., Ltd, 8888 Lvyou Road, High-tech Zone, Jinan, 250104, P.R. China
| | - Stacy Mary Yeh
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
5
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
6
|
Li P, Niu Y, Li S, Zu X, Xiao M, Yin L, Feng J, He J, Shen Y. Identification of an AXL kinase inhibitor in triple-negative breast cancer by structure-based virtual screening and bioactivity test. Chem Biol Drug Des 2021; 99:222-232. [PMID: 34679238 DOI: 10.1111/cbdd.13977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/27/2021] [Accepted: 10/16/2021] [Indexed: 01/04/2023]
Abstract
Breast cancer is a malignant tumor that occurs in the glandular epithelium of the breast, and more than 15% of the patients are triple-negative breast cancer (TNBC). Therefore, finding new targets and targeted therapeutic drugs for TNBC is urgent. Overexpression of the AXL is associated with motility and invasiveness of the TNBC cells, which is a potential target for breast cancer therapy. A compound Y041-5921 (IC50 = 6.069 μm for AXL kinase and IC50 = 4.1 μm for MDA-MB-231 cell line) was identified through structure-based virtual screening and bioassay test for the first time. The compound Y041-5921 could significantly inhibit the proliferation and invasion of the TNBC cells and the toxicity of Y041-5921 to normal immortalized breast epithelial cells was far lower than that of commonly used clinical chemotherapy drugs. Besides, it also had well inhibitory effect on the proliferation of many other malignant tumor cell lines (the IC50 value are 10.0 m, 7.1 m, 10.3 m, 11.4 m and 5.8 m for U251 cell, COLO cell, PC-9 cell, CAKI-1 cell and MG63 cell, respectively). The interaction mechanism between Y041-5921 and AXL was studied by molecular dynamics (MD) simulations and binding free energy calculation, and the key residues whose energy contribution mainly comes from non-polar solvation interaction (such as Ala565, Lys567, Met598, Leu620, Pro621, Met623, Lys624, Arg676, Asn677 and Met679) were identified. The small molecule inhibitors Y041-5921 targeting AXL reported in this work will lay a foundation and provide a theoretical basis for the development of the TNBC.
Collapse
Affiliation(s)
- Pei Li
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Key Laboratory of Oncology and Molecular Pathology of Hunan Province, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yuzhen Niu
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China
| | - Shuyan Li
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Xuyu Zu
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Key Laboratory of Oncology and Molecular Pathology of Hunan Province, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Maoyu Xiao
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Key Laboratory of Oncology and Molecular Pathology of Hunan Province, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Liyang Yin
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Key Laboratory of Oncology and Molecular Pathology of Hunan Province, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jianbo Feng
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Key Laboratory of Oncology and Molecular Pathology of Hunan Province, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jun He
- The Nanhua Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yingying Shen
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Key Laboratory of Oncology and Molecular Pathology of Hunan Province, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
7
|
Chang H, An R, Li X, Lang X, Feng J, Lv M. Anti-Axl monoclonal antibodies attenuate the migration of MDA-MB-231 breast cancer cells. Oncol Lett 2021; 22:749. [PMID: 34539853 PMCID: PMC8436363 DOI: 10.3892/ol.2021.13010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022] Open
Abstract
The receptor tyrosine kinase, anexelekto (Axl) is involved in tumor cell growth, migration and invasion, and has been associated with chemotherapy resistance, which makes it an attractive target for cancer therapy. In total, six Axl-targeted monoclonal antibodies (mAbs) and two antibody-drug conjugates have been reported in the last 10 years, which have been shown to have bioactivity in inhibiting tumor cell proliferation and migration. The Axl external cell domain (Axl−ECD), consisting of 426 amino acids, has always been used as an antigen in the screening process for all six of these Axl-targeted mAbs. However, the Axl functional domain, which interacts with its natural ligand, growth arrest-specific protein 6 (Gas6), is only a small part of the Axl−ECD. Antibodies targeting the Axl functional domain may efficiently block Gas6-Axl binding and attenuate its downstream signals and activities. To the best of our knowledge, no mAbs targeting the Axl functional domain have been reported. In the present study, a major Axl functional domain interacting with Gas6 was determined using bioinformatics and structural biology methods. In MDA-MB-231 breast cancer cell assays, anti-Axl mAbs targeting this relatively specific Axl functional domain almost completely neutralized the stimulation of Gas6 in both Axl phosphorylation and cell migration assays, and showed similar activity to the positive control drug R428 (a small molecular tyrosine kinase inhibitor of Axl currently in phase II clinical trials) in the cell migration assay. Given the important role of Axl in tumor development and chemotherapy resistance, Axl-targeted mAbs could be used to inhibit tumor cells directly, as well as reduce the development of chemotherapy resistance by blocking Axl activity. The application of Axl-targeted mAbs combined with chemotherapy provides a promising treatment strategy for patients with tumors, particularly those with triple-negative breast cancer, for whom no targeted therapy is currently available.
Collapse
Affiliation(s)
- Hong Chang
- Institute of Medical Technology, Suzhou Vocational Health College, Suzhou, Jiangsu 215009, P.R. China.,College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Ran An
- College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050051, P.R. China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Xiaoling Lang
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China
| | - Ming Lv
- Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing 100850, P.R. China.,Laboratory of Immunology, Institute of Military Cognitive and Brain Sciences, Beijing 100850, P.R. China
| |
Collapse
|
8
|
Abstract
In metastatic renal cell carcinoma (mRCC) patients, cardiac metastases are a rare and often a post-mortem finding. Clinical manifestations of cardiac metastases have a late onset and include pericardial effusions, heart failure and embolic phenomena. Treatment of cardiac metastasis is not yet standardized, and few data are available about the efficacy of TKI on treatment of cardiac metastases in mRCC patients. In this report, we describe the case of a 66-year-old male who presented with mRCC with lung and cardiac metastases treated with cabozantinib, a multikinase inhibitor that was administered in second line after disease progression with sunitinib. To date, there are no data about the safety and efficacy of cabozantinib in mRCC with cardiac metastasis. In a real word analysis, cabozantinib demonstrated to be associated to a modest risk of developing left ventricular heart failure. It is unknown if this risk is higher in mRCC population with cardiac metastases. We report the first evidence of efficacy and safety of cabozantinib in cardiac mRCC patients, probably due to its specific inhibition of several molecular intracellular pathways. Additional molecular and clinical studies are needed before well tolerated and efficacy of cabozantinib treatment for these patients can be fully understood.
Collapse
|
9
|
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases Children's Hospital Affiliated to Zhengzhou University Henan Children's Hospital, Zhengzhou Children's Hospital Zhengzhou University, Zhengzhou 450018, China
| | - Hailiang Zhu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases Children's Hospital Affiliated to Zhengzhou University Henan Children's Hospital, Zhengzhou Children's Hospital Zhengzhou University, Zhengzhou 450018, China
| |
Collapse
|