1
|
Sun X, Gu Y, Liu X, Korla PK, Hao J. Neferine Pretreatment Attenuates Isoproterenol-Induced Cardiac Injury Through Modulation of Oxidative Stress, Inflammation, and Apoptosis in Rats. Appl Biochem Biotechnol 2024; 196:7404-7428. [PMID: 38526658 DOI: 10.1007/s12010-024-04917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Heart attacks, also known as myocardial infarctions (MIs), are one of the main reasons people die from cardiovascular diseases (CVDs) worldwide. Neferine, an alkaloid derived from Nelumbo nucifera seeds, has garnered interest due to its purported medicinal effects. In the current research, we induced MI in rats using the β-adrenergic agonist isoproterenol to investigate whether neferine can improve cardiac dysfunction. The rats were separated into four groups: control, isoproterenol (ISO), and two treatment groups received neferine at doses of 10 or 20 mg/kg once daily for 28 days. On days 27 and 28, the groups undergoing treatment were administered with an ISO injection. Results showed that pretreatment with neferine strongly protected against changes in lipid profiles and cardiac functional markers in ISO-administered rats. Neferine attenuated histopathologic changes, collagen deposition, and myocardial fibrosis in rats administered ISO. Neferine pretreatment significantly inhibited the oxidative stress, inflammatory, and apoptotic markers in the heart of ISO-injected rats. This was achieved through Nrf2/Keap1/ARE signaling stimulation, TLR4/NF-κB/MAPK-mediated signaling inhibition, and activation of the intrinsic apoptotic pathway. Using CB-Dock-2, researchers determined that neferine has a high binding affinity with protein receptors that are pivotal in several biological processes. In conclusion, the study provides strong evidence that pretreatment with neferine protects rats from ISO-induced heart damage.
Collapse
Affiliation(s)
- Xiaoqian Sun
- Cardiovascular Medicine Department, Xi'an Gaoxin Hospital, Xi'an, 710000, China
| | - Yongwen Gu
- Cardiovascular Medicine Department, Suzhou Yongding Hospital, Suzhou, 215200, China
| | - Xinghua Liu
- Cardiovascular Medicine Department, Putuo Center Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Praveen Kumar Korla
- Department of Clinical Science, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC, 27607, USA
| | - Junjun Hao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Chen K, Beeraka NM, Zhang X, Sinelnikov MY, Plotnikova M, Zhao C, Basavaraj V, Zhang J, Lu P. Recent Advances in Therapeutic Modalities Against Breast Cancer-Related Lymphedema: Future Epigenetic Landscape. Lymphat Res Biol 2023; 21:536-548. [PMID: 37267206 PMCID: PMC10753987 DOI: 10.1089/lrb.2022.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Background: Lymphedema is a significant postsurgical complication observed in the majority of breast cancer patients. These multifactorial etiopathogenesis have a significant role in the development of novel diagnostic/prognostic biomarkers and the development of novel therapies. This review aims to ascertain the epigenetic alterations that lead to breast cancer-related lymphedema (BCRL), multiple pathobiological events, and the underlying genetic predisposing factors, signaling cascades pertinent to the lapses in effective prognosis/diagnosis, and finally to develop a suitable therapeutic regimen. Methods and Results: We have performed a literature search in public databases such as PubMed, Medline, Google Scholar, National Library of Medicine and screened several published reports. Search words such as epigenetics to induce BCRL, prognosis/diagnosis, primary lymphedema, secondary lymphedema, genetic predisposing factors for BRCL, conventional therapies, and surgery were used in these databases. This review described several epigenetic-based predisposing factors and the pathophysiological consequences of BCRL, which affect the overall quality of life, and the interplay of these events could foster the progression of lymphedema in breast cancer survivors. Prognosis/diagnostic and therapy lapses for treating BCRL are highly challenging due to genetic and anatomical variations, alteration in the lymphatic vessel contractions, and variable expression of several factors such as vascular endothelial growth factor (VEGF)-E and vascular endothelial growth factor receptor (VEGFR) in breast cancer survivors. Conclusion: We compared the efficacy of various conventional therapies for treating BCRL as a multidisciplinary approach. Further substantial research is required to decipher underlying signaling epigenetic pathways to develop chromatin-modifying therapies pertinent to the multiple etiopathogenesis to explore the correlation between the disease pathophysiology and novel therapeutic modalities to treat BCRL.
Collapse
Affiliation(s)
- Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Narasimha M. Beeraka
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Andhra Pradesh, India
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Xinliang Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Mikhail Y. Sinelnikov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Maria Plotnikova
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Cuiping Zhao
- The 80th Army Hospital of the Chinese People's Liberation Army, Weifang, China
| | - Vijaya Basavaraj
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Wu MC, Gao YH, Zhang C, Ma BT, Lin HR, Jiang JY, Xue MF, Li S, Wang HB. Liensinine and neferine exert neuroprotective effects via the autophagy pathway in transgenic Caenorhabditis elegans. BMC Complement Med Ther 2023; 23:386. [PMID: 37891552 PMCID: PMC10612239 DOI: 10.1186/s12906-023-04183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Liensinine and neferine are the main bisbenzylisoquinoline alkaloids obtained from the seeds of Nelumbo nucifera, which commonly used as edible food and traditional medicine in Asia. It was reported that liensinine and neferine could inhibit the activities of acetylcholinesterase and cross the blood-brain barriers, suggesting their therapeutic potential for the management of Alzheimer's disease. METHODS Here, we employed SH-SY5Y human neuroblastoma cells stably transfected with the human Swedish amyloid precursor protein (APP) mutation APP695 (APP695swe SH-SY5Y) as an in vitro model and transgenic Caenorhabditis elegans as an in vivo model to investigate the neuroprotective effects and underlying mechanism of liensinine and neferine. RESULTS We found that liensinine and neferine could significantly improve the viability and reduce ROS levels in APP695swe SH-SY5Y cells, inhibit β-amyloid and tau-induced toxicity, and enhance stress resistance in nematodes. Moreover, liensinine and neferine had obviously neuroprotective effects by assaying chemotaxis, 5-hydroxytryptamine sensitivity and the integrity of injured neurons in nematodes. Preliminary mechanism studies revealed that liensinine and neferine could upregulate the expression of autophagy related genes (lgg-1, unc-51, pha-4, atg-9 and ced-9) and reduce the accumulation of β-amyloid induced autophagosomes, which suggested autophagy pathway played a key role in neuroprotective effects of these two alkaloids. CONCLUSIONS Altogether, our findings provided a certain working foundation for the use of liensinine and neferine to treat Alzheimer's disease based on neuroprotective effects.
Collapse
Affiliation(s)
- Meng-Chen Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Ye-Hui Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Chen Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Bo-Tian Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Hong-Ru Lin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Jin-Yun Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Meng-Fan Xue
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Shan Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
| | - Hong-Bing Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
4
|
Yang J, Zhang Q, Huang G, Cong J, Wang T, Zhai X, Zhang J, Qi G, Zhou L, Jin J. Combined effects of vitamin D and neferine on the progression and metastasis of colorectal cancer. J Cancer Res Clin Oncol 2023; 149:6203-6210. [PMID: 36697773 PMCID: PMC10356635 DOI: 10.1007/s00432-022-04552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE To investigate the synergistic effect of vitamin D and neferine on the growth and metastasis of colorectal cancer (CRC). METHODS The synergistic effect of biologically active form of vitamin D, VD3 and neferine on the treatment of CRC was investigated by bliss analysis. Colony formation and wound healing ability, migration and invasion ability, and epithelial mesenchymal transition of HCT-116 cells, as a response to the combination treatment with VD3 and neferine were evaluated. RESULTS VD3 and neferine showed a synergistic effect on CRC cell growth at a relatively low dose. The wound healing and colony formation capacity, cell migration and invasion abilities were all decreased by combination use of VD3 and neferine, compared to the VD3 or neferine treated single group. Furthermore, VD3 and neferine significantly decreased the expressions of N-cadherin, vimentin, snail, and slug in HCT-116 cells. CONCLUSION These data suggest that neferine enhances the anticancer capability of VD3 and reduces the dose dependency of VD3. The combination of vitamin D with neferine appears to be a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Jinfeng Yang
- School of Pharmacy, Guilin Medical University, Guilin, 541199 China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199 China
- Department of Immunology, Guilin Medical University, Guilin, 541199 China
| | - Qinyu Zhang
- School of Pharmacy, Guilin Medical University, Guilin, 541199 China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199 China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541000 China
| | - Guanlin Huang
- School of Pharmacy, Guilin Medical University, Guilin, 541199 China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199 China
| | - Jiacheng Cong
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199 China
- Department of Immunology, Guilin Medical University, Guilin, 541199 China
| | - Ting Wang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199 China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, 541199 China
| | - Xiaoya Zhai
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199 China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, 541199 China
| | - Juzheng Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199 China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, 541199 China
| | - Guangying Qi
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199 China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, 541199 China
| | - Lihua Zhou
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199 China
| | - Jiamin Jin
- School of Pharmacy, Guilin Medical University, Guilin, 541199 China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199 China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, 541199 China
| |
Collapse
|
5
|
Qiao W, Zang Z, Li D, Shao S, Li Q, Liu Z. Liensinine ameliorates ischemia-reperfusion-induced brain injury by inhibiting autophagy via PI3K/AKT signaling. Funct Integr Genomics 2023; 23:140. [PMID: 37118322 DOI: 10.1007/s10142-023-01063-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
The current study aimed to explore the role of autophagy in cerebral ischemia-reperfusion injuries (CIRI) and elucidate the efficacy of liensinine treatment. An in vitro ischemia-reperfusion (I/R) neuronal cell model was established and pretreated with liensinine or rapamycin (RAPA). Cell proliferation and survival were detected using a cell counting kit-8 (CCK-8) assay, while cell damage and apoptosis were detected using the lactate dehydrogenase (LDH) leakage rate and flow cytometry. Autophagy activity was detected using monodansylcadaverine (MDC) staining. Thereafter, I/R models were established in vivo in rats and the presence of neurological deficits was examined. Hematoxylin-eosin (HE) and triphenyl tetrazolium chloride (TTC) staining was used to detect pathological damage in brain tissue and the volume ratio of the cerebral infarction. The levels of PI3K/AKT pathway-related proteins and autophagy-related proteins (mTOR, LC3, P62, and TSC2) were detected using Western blot. The findings showed that liensinine treatment increased cell viability, decreased cell injury and apoptosis, and inhibited autophagy. The addition of RAPA to promote autophagy inhibited cell viability and enhanced cell injury and apoptosis. The I/R rats in the model group exhibited deficient neurological function, while those in the liensinine treatment group showed restoration of normal neural function and reduction of the necrotic area and infarct volume ratio in the brain tissue. Furthermore, liensinine treatment also inhibited the PI3K/Akt pathway activity and autophagy. However, addition of RAPA reversed the effects of liensinine treatment and aggravated brain tissue injury. Therefore, liensinine can play a neuroprotective role in CIRI by inhibiting autophagy through regulation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wanchen Qiao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoxia Zang
- Department of Neurology, Heilongjiang Province Hospital, Harbin, China
| | - Dawei Li
- Department of Neurology, Shenzhen Sami Medical Center, Shenzhen, China
| | - Shuai Shao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingla Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiqiang Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Shen F, Wu C, Zhong X, Ma E, Peng J, Zhu W, Wo D, Ren DN. Liensinine prevents ischemic injury following myocardial infarction via inhibition of Wnt/β‑catenin signaling activation. Biomed Pharmacother 2023; 162:114675. [PMID: 37044026 DOI: 10.1016/j.biopha.2023.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) is the leading cause of deaths worldwide, triggering widespread and irreversible damage to the heart. Currently, there are no drugs that can reverse ischemic damage to the myocardium and hence, finding novel therapeutic agents that can limit the extent of myocardial damage following MI is crucial. Liensinine (LSN) is a naturally derived bisbenzylisoquinoline alkaloid that is known to exhibit numerous antioxidative and cardiovascular beneficial effects. However, the role of LSN in MI-induced injury and its underlying mechanisms remain unexplored. PURPOSE Our study aims to evaluate the cardioprotective effects of LSN following MI and its underlying molecular mechanisms. METHODS We constructed murine models of MI in order to examine the potential cardioprotective effects and mechanisms of LSN in protecting against myocardial ischemic damage both in vivo and in vitro. RESULTS Administration with LSN strongly protected against cardiac injuries following MI by decreasing the extent of ischemic damage and improving cardiac function. Additionally, LSN was found to be a potent inhibitor of Wnt/β‑catenin signaling pathway. Hence, the beneficial effects of LSN in preventing oxidative and DNA damage following ischemia was due to its ability to inhibit aberrant activation of Wnt/β‑catenin signaling. CONCLUSIONS Our findings reveal for the first time a novel cardioprotective role of LSN during myocardial infarction and most notably, its ability to protect cardiomyocytes against oxidative stress-induced damage via inhibiting Wnt/β-catenin signaling. Our study therefore suggests new therapeutic potential of LSN or plants that contain the natural alkaloid LSN in ischemic heart diseases.
Collapse
Affiliation(s)
- Fang Shen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Celiang Wu
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xiaomei Zhong
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - En Ma
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weidong Zhu
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Da Wo
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| | - Dan-Ni Ren
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Zhao D, Wang X, Beeraka NM, Zhou R, Zhang H, Liu Y, Zhang Y, Zhang Y, Qin G, Liu J. High Body Mass Index Was Associated With Human Epidermal Growth Factor Receptor 2-Positivity, Histological Grade and Disease Progression Differently by Age. World J Oncol 2023; 14:75-83. [PMID: 36895993 PMCID: PMC9990731 DOI: 10.14740/wjon1543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Background Breast cancer is the most commonly occurring cancer among women. The relationship between the obesity paradox and breast cancer is still unclear. The goal of this study is to elucidate the association between high body mass index (BMI) and pathological findings by age. Methods We collected BMI information pertinent to breast cancer patients from the Gene Expression Omnibus (GEO) database. We use a BMI of 25 as a boundary, and those greater than 25 are defined as high BMI. Besides, we segregated the patients based on age into two age groups: < 55 years, and > 55 years. In this study, R × C Chi-square for trend and binary logistic regression was used to estimate the odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Results Higher BMI was associated with less breast cancer incidence in females younger than 55 years of age (OR = 0.313, CI: 0.240 - 0.407). High BMI was associated with human epidermal growth factor receptor 2 (HER2) positivity in breast cancer patients of less than 55 years (P < 0.001), but not in the older patients. High BMI was associated with histological grade lower than 2 in the breast cancer patients older than 55 years, but not in younger patients (OR = 0.288, CI: 0.152 - 0.544). Besides, high BMI was associated with worse progression-free survival in younger breast cancer patients, but not in older patients (P < 0.05). Conclusions Our results described a significant relationship between breast cancer incidence and BMI at different ages and benefit breast cancer patients to implement strategies to control their BMI for reducing the recurrence and distant recurrence.
Collapse
Affiliation(s)
- Di Zhao
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China.,These authors contributed equally to this article
| | - Xiaoyan Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China.,These authors contributed equally to this article
| | - Narasimha M Beeraka
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China.,Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.,Department of Pharmaceutical Chemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS College of Pharmacy, Mysuru, Karnataka, India.,These authors contributed equally to this article
| | - Runze Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China
| | - Haohao Zhang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China
| | - Yanxia Liu
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China
| | - Yinghui Zhang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China
| | - Ying Zhang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China
| | - Guijun Qin
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China
| |
Collapse
|
8
|
Sharma A, Sharma L, Nandy SK, Payal N, Yadav S, Vargas-De-La-Cruz C, Anwer MK, Khan H, Behl T, Bungau SG. Molecular Aspects and Therapeutic Implications of Herbal Compounds Targeting Different Types of Cancer. Molecules 2023; 28:750. [PMID: 36677808 PMCID: PMC9867434 DOI: 10.3390/molecules28020750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Due to genetic changes in DNA (deoxyribonucleic acid) sequences, cancer continues to be the second most prevalent cause of death. The traditional target-directed approach, which is confronted with the importance of target function in healthy cells, is one of the most significant challenges in anticancer research. Another problem with cancer cells is that they experience various mutations, changes in gene duplication, and chromosomal abnormalities, all of which have a direct influence on the potency of anticancer drugs at different developmental stages. All of these factors combine to make cancer medication development difficult, with low clinical licensure success rates when compared to other therapy categories. The current review focuses on the pathophysiology and molecular aspects of common cancer types. Currently, the available chemotherapeutic drugs, also known as combination chemotherapy, are associated with numerous adverse effects, resulting in the search for herbal-based alternatives that attenuate resistance due to cancer therapy and exert chemo-protective actions. To provide new insights, this review updated the list of key compounds that may enhance the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Shouvik Kumar Nandy
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Nazrana Payal
- School of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Shivam Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, Bromatology and Toxicology, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tapan Behl
- School of Health Science and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
9
|
Bajalia EM, Azzouz FB, Chism DA, Giansiracusa DM, Wong CG, Plaskett KN, Bishayee A. Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers (Basel) 2022; 14:3278. [PMID: 35805049 PMCID: PMC9265746 DOI: 10.3390/cancers14133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is associated with about 90% of renal malignancies, and its incidence is increasing globally. Plant-derived compounds have gained significant attention in the scientific community for their preventative and therapeutic effects on cancer. To evaluate the anticancer potential of phytocompounds for RCC, we compiled a comprehensive and systematic review of the available literature. Our work was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. The literature search was performed using scholarly databases such as PubMed, Scopus, and ScienceDirect and keywords such as renal cell carcinoma, phytochemicals, cancer, tumor, proliferation, apoptosis, prevention, treatment, in vitro, in vivo, and clinical studies. Based on in vitro results, various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, suppressed cell viability, proliferation and growth, showed cytotoxic activity, inhibited invasion and migration, and enhanced the efficacy of chemotherapeutic drugs in RCC. In various animal tumor models, phytochemicals suppressed renal tumor growth, reduced tumor size, and hindered angiogenesis and metastasis. The relevant antineoplastic mechanisms involved upregulation of caspases, reduction in cyclin activity, induction of cell cycle arrest and apoptosis via modulation of a plethora of cell signaling pathways. Clinical studies demonstrated a reduced risk for the development of kidney cancer and enhancement of the efficacy of chemotherapeutic drugs. Both preclinical and clinical studies displayed significant promise of utilizing phytochemicals for the prevention and treatment of RCC. Further research, confirming the mechanisms and regulatory pathways, along with randomized controlled trials, are needed to establish the use of phytochemicals in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (E.M.B.); (F.B.A.); (D.A.C.); (D.M.G.); (C.G.W.); (K.N.P.)
| |
Collapse
|
10
|
Chen K, Zhang J, Beeraka NM, Tang C, Babayeva YV, Sinelnikov MY, Zhang X, Zhang J, Liu J, Reshetov IV, Sukocheva OA, Lu P, Fan R. Advances in the Prevention and Treatment of Obesity-Driven Effects in Breast Cancers. Front Oncol 2022; 12:820968. [PMID: 35814391 PMCID: PMC9258420 DOI: 10.3389/fonc.2022.820968] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Obesity and associated chronic inflammation were shown to facilitate breast cancer (BC) growth and metastasis. Leptin, adiponectin, estrogen, and several pro-inflammatory cytokines are involved in the development of obesity-driven BC through the activation of multiple oncogenic and pro-inflammatory pathways. The aim of this study was to assess the reported mechanisms of obesity-induced breast carcinogenesis and effectiveness of conventional and complementary BC therapies. We screened published original articles, reviews, and meta-analyses that addressed the involvement of obesity-related signaling mechanisms in BC development, BC treatment/prevention approaches, and posttreatment complications. PubMed, Medline, eMedicine, National Library of Medicine (NLM), and ReleMed databases were used to retrieve relevant studies using a set of keywords, including "obesity," "oncogenic signaling pathways," "inflammation," "surgery," "radiotherapy," "conventional therapies," and "diet." Multiple studies indicated that effective BC treatment requires the involvement of diet- and exercise-based approaches in obese postmenopausal women. Furthermore, active lifestyle and diet-related interventions improved the patients' overall quality of life and minimized adverse side effects after traditional BC treatment, including postsurgical lymphedema, post-chemo nausea, vomiting, and fatigue. Further investigation of beneficial effects of diet and physical activity may help improve obesity-linked cancer therapies.
Collapse
Affiliation(s)
- Kuo Chen
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Zhang
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Narasimha M. Beeraka
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical College, Mysuru, India
| | - Chengyun Tang
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Yulia V. Babayeva
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Mikhail Y. Sinelnikov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Xinliang Zhang
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Jiacheng Zhang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Igor V. Reshetov
- Department of Human Anatomy, I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Olga A. Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Pengwei Lu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruitai Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Abstract
This article concerns the synthesis and biological activities of some N-(1-(3,4-dimethoxyphenyl)propan-2-yl) amides as isoquinoline precursors and compounds with smooth muscle (SM) relaxant activity. Aim: find the biological activity of N-(1-(3,4-dimethoxyphenyl)propan-2-yl) amides and compare it with papaverine, an isoquinoline alkaloid that has been known as a brain and coronary vasodilator and SM relaxant. Materials and methods: In silico simulation with the PASS online program predicts SM relaxant activity for the compounds. The amides were tested on the isolated gastric SM preparations (SMPs) from rats to determine their effects on spontaneous contractile activity (CA) compared with papaverine. The in vivo effect on the learning and memory processes of rats was also assessed. Results: the data from the isometric measurements showed that one of the compounds caused ex vivo relaxation in circular SM tissues isolated from the stomach (corpus) of male Wistar rats. Conclusion: We found that the compound’s SM relaxation uses the papaverine pathway. It also has an improving effect on the cognitive functions of learning and memory processes in rats.
Collapse
|
12
|
Retrospective analysis: 5509 cases of "totally implantable venous access port systems implantation (TIVAPS) depth" assisted by digital radiography. Langenbecks Arch Surg 2022; 407:3123-3132. [PMID: 35660962 DOI: 10.1007/s00423-022-02573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Modern oncological treatment in breast cancer patients requires the precise delivery of chemotherapy infusion into the central venous systems without toxicity. TIVAPS is the significant method of chemotherapy delivery although certain internal or external complications associated with their placement. However, the long-term use of TIVAPS is still a concern to minimize the complications such as venous thrombosis syndrome (VTS) and cardiac defects. The aim of this study is to investigate the potential disadvantages that may be avoided by digital radiography (DR)-assisted measurement of catheter depth pertinent to TIVAPS implanted system. METHODS Retrospective analysis related to 5509 TIVAPS recipients of 99% female breast cancer patients and 1% male blood disorder patients registered from April 2013 to November 2017 were included in the study. Patients with TIVAPS catheter tip depth into superior vena cava into upper (group A), middle (group B), and lower (group C) parts were stratified for evaluation during implantation; DR-assisted measurement of TIVAPS was performed to decipher "tip depth of catheter" and determined the relevance of tip depth to complications such as VTS and cardiac defects. RESULTS Incidence of VTS complications were significantly higher in TIVAPS recipients of group A (82.7%) than group B (16%) and group C (0.12%) in which the "tip depth of TIVAPS was deeper" (P < 0.01). Defects in heart function are higher in group C (59.6%) than group A (15.8%) and group B (24.6%) in which the "tip depth of TIVAPS was deeper" (P < 0.01). CONCLUSION DR-assisted measurement can more accurately determine the depth of TIVAPS catheter implantation, and avoid the incidence of related complications, and provide a better method for surgeons.
Collapse
|
13
|
Punia Bangar S, Dunno K, Kumar M, Mostafa H, Maqsood S. A comprehensive review on lotus seeds (Nelumbo nucifera Gaertn.): Nutritional composition, health-related bioactive properties, and industrial applications. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
14
|
Bishayee A, Patel PA, Sharma P, Thoutireddy S, Das N. Lotus (Nelumbo nucifera Gaertn.) and Its Bioactive Phytocopounds: A Tribute to Cancer Prevention and Intervention. Cancers (Basel) 2022; 14:cancers14030529. [PMID: 35158798 PMCID: PMC8833568 DOI: 10.3390/cancers14030529] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The plant Nelumbo nucifera (Gaertn.), commonly known as lotus, sacred lotus, Indian lotus, water lily, or Chinese water lily, is an aquatic perennial crop belonging to the family of Nelumbonaceae. N. nucifera has traditionally been used as an herbal medicine and functional food in many parts of Asia. It has been found that different parts of this plant consist of various bioactive phytocompounds. Within the past few decades, N. nucifera and its phytochemicals have been subjected to intense cancer research. In this review, we critically evaluate the potential of N. nucifera phytoconstituents in cancer prevention and therapy with related mechanisms of action. Abstract Cancer is one of the major leading causes of death worldwide. Accumulating evidence suggests a strong relationship between specific dietary habits and cancer development. In recent years, a food-based approach for cancer prevention and intervention has been gaining tremendous attention. Among diverse dietary and medicinal plants, lotus (Nelumbo nucifera Gaertn., family Nymphaeaceae), also known as Indian lotus, sacred lotus or Chinese water lily, has the ability to effectively combat this disease. Various parts of N. nucifera have been utilized as a vegetable as well as an herbal medicine for more than 2000 years in the Asian continent. The rhizome and seeds of N. nucifera represent the main edible parts. Different parts of N. nucifera have been traditionally used to manage different disorders, such as fever, inflammation, insomnia, nervous disorders, epilepsy, hypertension, cardiovascular diseases, obesity, and hyperlipidemia. It is believed that numerous bioactive components, including alkaloids, polyphenols, terpenoids, steroids, and glycosides, are responsible for its various biological and pharmacological activities, such as antioxidant, anti-inflammatory, immune-modulatory, antiviral, hepatoprotective, cardioprotective, and hypoglycemic activities. Nevertheless, there is no comprehensive review with an exclusive focus on the anticancer attributes of diverse phytochemicals from different parts of N. nucifera. In this review, we have analyzed the effects of N. nucifera extracts, fractions and pure compounds on various organ-specific cancer cells and tumor models to understand the cancer-preventive and therapeutic potential and underlying cellular and molecular mechanisms of action of this interesting medicinal and dietary plant. In addition, the bioavailability, pharmacokinetics, and possible toxicity of N. nucifera-derived phytochemicals, as well as current limitations, challenges and future research directions, are also presented.
Collapse
Affiliation(s)
- Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
- Correspondence: or
| | - Palak A. Patel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Priya Sharma
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Shivani Thoutireddy
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (P.A.P.); (P.S.); (S.T.)
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India;
| |
Collapse
|
15
|
Li X, Miao S, Li F, Ye F, Yue G, Lu R, Shen H, Ye Y. Cellular Calcium Signals in Cancer Chemoprevention and Chemotherapy by Phytochemicals. Nutr Cancer 2022; 74:2671-2685. [PMID: 35876249 DOI: 10.1080/01635581.2021.2020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang, China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Ye
- Department of Clinical Laboratory Center, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guang Yue
- Department of Internal Medicine, The Third Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Experimental Research, Affiliated Kunshan Hospital, Jiangsu University, Kunshan, Suzhou, China
| | - Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Wang Z, Li Y, Ma D, Zeng M, Wang Z, Qin F, Chen J, Christian M, He Z. Alkaloids from lotus ( Nelumbo nucifera): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34845950 DOI: 10.1080/10408398.2021.2009436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different parts of lotus (Nelumbo nucifera Gaertn.) including the seeds, rhizomes, leaves, and flowers, are used for medicinal purposes with health promoting and illness preventing benefits. The presence of active chemicals such as alkaloids, phenolic acids, flavonoids, and terpenoids (particularly alkaloids) may account for this plant's pharmacological effects. In this review, we provide a comprehensive overview and summarize up-to-date research on the biosynthesis, pharmacokinetics, and bioactivity of lotus alkaloids as well as their safety. Moreover, the potential uses of lotus alkaloids in the food, pharmaceutical, and cosmetic sectors are explored. Current evidence shows that alkaloids, mainly consisting of aporphines, 1-benzylisoquinolines, and bisbenzylisoquinolines, are present in different parts of lotus. The bioavailability of these alkaloids is relatively low in vivo but can be enhanced by technological modification using nanoliposomes, liposomes, microcapsules, and emulsions. Available data highlights their therapeutic and preventive effects on obesity, diabetes, neurodegeneration, cancer, cardiovascular disease, etc. Additionally, industrial applications of lotus alkaloids include their use as food, medical, and cosmetic ingredients in tea, other beverages, and healthcare products; as lipid-lowering, anticancer, and antipsychotic drugs; and in facial masks, toothpastes, and shower gels. However, their clinical efficacy and safety remains unclear; hence, larger and longer human trials are needed to achieve their safe and effective use with minimal side effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Dandan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
17
|
Chaeichi-Tehrani N, Ferns GA, Hassanian SM, Khazaei M, Avan A. The Therapeutic Potential of Targeting Autophagy in The Treatment of Cancer. Curr Cancer Drug Targets 2021; 21:725-736. [PMID: 34077348 DOI: 10.2174/1568009621666210601113144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
Autophagy is a mechanism by which unwanted cellular components are degraded through a pathway that involves the lysosomes and contributes to several pathological conditions such as cancer. Gastrointestinal cancers affect the digestive organs from the esophagus to the anus and are among the most commonly diagnosed cancers globally. The modulation of autophagy using pharmacologic agents potentially offers a great potential for cancer therapy. In this review, some commonly used compounds, together with their molecular target and the mechanism through which they stimulate or block the autophagy pathway as well as their therapeutic benefit in treating patients with gastrointestinal cancers, are summarized.
Collapse
Affiliation(s)
- Negin Chaeichi-Tehrani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Seyed Mahdi Hassanian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic syndrome Research centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Yeh KC, Hung CF, Lin YF, Chang DC, Pai MS, Wang SJ. Neferine, a bisbenzylisoquinoline alkaloid of Nelumbo nucifera, inhibits glutamate release in rat cerebrocortical nerve terminals through 5-HT1A receptors. Eur J Pharmacol 2020; 889:173589. [DOI: 10.1016/j.ejphar.2020.173589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023]
|
19
|
Mandal CC. Osteolytic metastasis in breast cancer: effective prevention strategies. Expert Rev Anticancer Ther 2020; 20:797-811. [PMID: 32772585 DOI: 10.1080/14737140.2020.1807950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Breast cancer is the most common cancer in women throughout the world. Patients who are diagnosed early generally have better prognosis and survivability. Indeed, advanced stage breast cancer often develops osteolytic metastases, leading to bone destruction. Although there are select drugs available to treat bone metastatic disease, these drugs have shown limited success. AREA COVERED This paper emphasizes updated mechanisms of bone remodeling and osteolytic bone metastases of breast cancer. This article also aims to explore the potential of novel natural and synthetic therapeutics in the effective prevention of breast cancer-induced osteolysis and osteolytic metastases of breast cancer. EXPERT OPINION Targeting TGFβ and BMP signaling pathways, along with osteoclast activity, appears to be a promising therapeutic strategy in the prevention of breast cancer-induced osteolytic bone destruction and metastatic growth at bone metastatic niches. Pilot studies in animal models suggest various natural and synthetic compounds and monoclonal antibodies as putative therapeutics in the prevention of breast cancer stimulated osteolytic activity. However, comprehensive pre-clinical studies demonstrating the PK/PD and in-depth understanding of molecular mechanism(s) by which these potential molecules exhibit anti-tumor growth and anti-osteolytic activity are still required to develop effective therapies against breast cancer-induced osteolytic bone disease.
Collapse
Affiliation(s)
- Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan , Ajmer, India
| |
Collapse
|
20
|
Liu Z, Hu L, Zhang Z, Song L, Zhang P, Cao Z, Ma J. Isoliensinine Eliminates Afterdepolarizations Through Inhibiting Late Sodium Current and L-Type Calcium Current. Cardiovasc Toxicol 2020; 21:67-78. [PMID: 32770463 DOI: 10.1007/s12012-020-09597-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022]
Abstract
Isoliensinine (IL) extracted from lotus seed has a good therapeutic effect on cardiovascular diseases. However, its effect on ion channels of ventricular myocytes is still unclear. We used whole-cell patch-clamp techniques to detect the effects of IL on transmembrane ion currents and action potential (AP) in isolated rabbit left ventricular myocytes. IL inhibited the transient sodium current (INaT), late sodium current (INaL) enlarged by sea anemone toxin (ATX II) and L-type calcium current (ICaL) in a concentration-dependent manner without affecting inward rectifier potassium current (IK1) and delayed rectifier potassium current (IK). These inhibitory effects are mainly manifested as reduced the AP amplitude (APA) and maximum depolarization velocity (Vmax) and shortened the action potential duration (APD), but had no significant effect on the resting membrane potential (RMP). Moreover, IL significantly eliminated ATX II-induced early afterdepolarizations (EADs) and high extracellular calcium-induced delayed afterdepolarizations (DADs). These results revealed that IL effectively eliminated EADs and DADs through inhibiting INaL and ICaL in ventricular myocytes, which indicates it has potential antiarrhythmic action.
Collapse
Affiliation(s)
- Zhipei Liu
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Hongshan District, Wuhan, 430065, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Liangkun Hu
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zefu Zhang
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Hongshan District, Wuhan, 430065, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lv Song
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Hongshan District, Wuhan, 430065, China
| | - Peihua Zhang
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Hongshan District, Wuhan, 430065, China
| | - Zhenzhen Cao
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Hongshan District, Wuhan, 430065, China
| | - Jihua Ma
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Hongshan District, Wuhan, 430065, China. .,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
21
|
Wang J, Dong Y, Li Q. Neferine induces mitochondrial dysfunction to exert anti-proliferative and anti-invasive activities on retinoblastoma. Exp Biol Med (Maywood) 2020; 245:1385-1394. [PMID: 32460625 DOI: 10.1177/1535370220928933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Retinoblastoma is common primary intraocular malignancy of infants and childhood. Neferine is a major bisbenzylisoquinoline alkaloid derived from the lotus plumule in Nelumbo nucifera. This study evaluated the mitigation role of Neferine on retinoblastoma in vitro and in vivo. Xenotransplantation model was established by injecting WERI-Rb-1 cells subcutaneously. Upon induction of retinoblastoma , mice were intraperitoneally injected with Neferine (0, 0.5, 1, 2 mg/kg) or ethanol every 3 days for 30 days. Tumor weight and tumor volume were measured every three days and compared between four groups. Then, mice were sacrificed and immunohistochemical examination was performed to compare Ki67, VEGF content between groups. WERI-Rb-1 cells were used for in vitro experiments and the anti-angiogenic role of Neferine was assessed by analyzing nodes/HPF number. In WERI-Rb-1 xenotransplantation model, compared with control group, 1 mg/kg Neferine treatment significantly inhibited tumor weight (0.39 ± 0.04 g vs. 0.25 ± 0.03 g, P< 0.05) and tumor volume (2163 ± 165 mm3 vs. 1276 ± 108 mm3, P< 0.05) after 30 days. Compared with ethanol-injected mice, 2 μM Neferine treatment significantly enhanced apoptosis rate (2.1 ± 0.6% vs. 14.6 ± 2.6%, P< 0.05), accompany downregulation of Ki67 (0.09 ± 0.02% vs. 0.01 ± 0.004%, P< 0.05) and VEGF (0.28 ± 0.04% vs. 0.05 ± 0.03%, P< 0.05) expression. Additionally, 2 μM Neferine treatment significantly decreased JC-1 red/green percentage. High-dose Neferine could decrease retinoblastoma angiogenesis in association with a significant inhibition on tumor growth and invasion. These findings suggested that Neferine could be a new treatment or adjuvant against retinoblastoma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yanmin Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qiuming Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
22
|
Dasari S, Bakthavachalam V, Chinnapaka S, Venkatesan R, Samy ALPA, Munirathinam G. Neferine, an alkaloid from lotus seed embryo targets HeLa and SiHa cervical cancer cells via pro-oxidant anticancer mechanism. Phytother Res 2020; 34:2366-2384. [PMID: 32364634 DOI: 10.1002/ptr.6687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 12/19/2022]
Abstract
Apoptosis and autophagy are important processes that control cellular homeostasis and have been highlighted as promising targets for novel anticancer drugs. This study aims to investigate the inhibitory effects and mechanisms of Neferine (Nef), an alkaloid from the lotus seed embryos of Nelumbo nucifera (N. nucifera), as a dual inducer of apoptosis and autophagy through the reactive oxygen species (ROS) activation in cervical cancer cells. Nef and N. nucifera extract suppressed the cell viability of HeLa and SiHa cells in a dose-dependent manner. Importantly, Nef showed minimal toxicity to normal cells. Furthermore, Nef inhibited anchorage-independent growth, colony formation and migration ability of cervical cancer cells. Nef induces mitochondrial apoptosis by increasing pro-apoptotic protein bax, cytochrome-c, cleaved caspase-3 and caspase-9, poly-ADP ribose polymerase (PARP) cleavage, DNA damage (pH2 AX) while downregulating Bcl-2, procaspase-3 and procaspase-9, and TCTP. Of note, apoptotic effect by Nef was significantly attenuated in the presence of N-acetylcysteine (NAC), suggesting pro-oxidant activity of this compound. Nef also promoted autophagy induction through increasing beclin-1, atg-4, atg-5 and atg-12, LC-3 activation, and P 62/SQSTM1 as determined by western blot analysis. Collectively, these results demonstrate that Nef is a potent anticancer compound against cervical cancer cells through inducing apoptosis and autophagic pathway involving ROS.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Velavan Bakthavachalam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Somaiah Chinnapaka
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Reshmii Venkatesan
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Angela L P A Samy
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, Illinois, USA
| |
Collapse
|
23
|
Aliev G. The Modulation of Beneficial and/or Harmful Effects of Free Oxygen Radicals in the Context of Molecular Mechanisms Regarding Drug - PART I. Curr Top Med Chem 2020; 19:2937-2939. [PMID: 31939342 DOI: 10.2174/156802661932200108160511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This special issue of Current Topic in Medicinal Chemistry (CTMC) covers outcomes and ideas for future molecular modifications leading to the novel derivatives with better constructive pharmacological potential for treatment of the different human disorders but also may considering anatomical features of the underlying tissues, and non-chemical based treatment strategies.
Collapse
Affiliation(s)
- Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), 8-2, Sechenov,Russian Federation.,Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation.,Research Institute of Human Morphology, Tsyurupy Street, Moscow, 117418, Russian Federation.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, United States
| |
Collapse
|