1
|
Nayarisseri A, Abdalla M, Joshi I, Yadav M, Bhrdwaj A, Chopra I, Khan A, Saxena A, Sharma K, Panicker A, Panwar U, Mendonça Junior FJB, Singh SK. Potential inhibitors of VEGFR1, VEGFR2, and VEGFR3 developed through Deep Learning for the treatment of Cervical Cancer. Sci Rep 2024; 14:13251. [PMID: 38858458 PMCID: PMC11164920 DOI: 10.1038/s41598-024-63762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
Cervical cancer stands as a prevalent gynaecologic malignancy affecting women globally, often linked to persistent human papillomavirus infection. Biomarkers associated with cervical cancer, including VEGF-A, VEGF-B, VEGF-C, VEGF-D, and VEGF-E, show upregulation and are linked to angiogenesis and lymphangiogenesis. This research aims to employ in-silico methods to target tyrosine kinase receptor proteins-VEGFR-1, VEGFR-2, and VEGFR-3, and identify novel inhibitors for Vascular Endothelial Growth Factors receptors (VEGFRs). A comprehensive literary study was conducted which identified 26 established inhibitors for VEGFR-1, VEGFR-2, and VEGFR-3 receptor proteins. Compounds with high-affinity scores, including PubChem ID-25102847, 369976, and 208908 were chosen from pre-existing compounds for creating Deep Learning-based models. RD-Kit, a Deep learning algorithm, was used to generate 43 million compounds for VEGFR-1, VEGFR-2, and VEGFR-3 targets. Molecular docking studies were conducted on the top 10 molecules for each target to validate the receptor-ligand binding affinity. The results of Molecular Docking indicated that PubChem IDs-71465,645 and 11152946 exhibited strong affinity, designating them as the most efficient molecules. To further investigate their potential, a Molecular Dynamics Simulation was performed to assess conformational stability, and a pharmacophore analysis was also conducted for indoctrinating interactions.
Collapse
Affiliation(s)
- Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, Madhya Pradesh, 452010, India.
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, 91, Sector-A, Mahalakshmi Nagar, Indore, Madhya Pradesh, 452010, India.
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Isha Joshi
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, Madhya Pradesh, 452010, India
| | - Manasi Yadav
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, Madhya Pradesh, 452010, India
| | - Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, Madhya Pradesh, 452010, India
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Ishita Chopra
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, Madhya Pradesh, 452010, India
- School of Medicine and Health Sciences, The George Washington University, Ross Hall, 2300 Eye Street, Washington, D.C., NW, 20037, USA
| | - Arshiya Khan
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, Madhya Pradesh, 452010, India
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Arshiya Saxena
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, Madhya Pradesh, 452010, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, Madhya Pradesh, 452010, India
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Aravind Panicker
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, Madhya Pradesh, 452010, India
| | - Umesh Panwar
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | | | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.
| |
Collapse
|
2
|
Bhrdwaj A, Abdalla M, Pande A, Madhavi M, Chopra I, Soni L, Vijayakumar N, Panwar U, Khan MA, Prajapati L, Gujrati D, Belapurkar P, Albogami S, Hussain T, Selvaraj C, Nayarisseri A, Singh SK. Structure-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation of EGFR for the Clinical Treatment of Glioblastoma. Appl Biochem Biotechnol 2023; 195:5094-5119. [PMID: 36976507 DOI: 10.1007/s12010-023-04430-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Glioblastoma (GBM) is a WHO Grade IV tumor with poor visibility, a high risk of comorbidity, and exhibit limited treatment options. Resurfacing from second-rate glioma was originally classified as either mandatory or optional. Recent interest in personalized medicine has motivated research toward biomarker stratification-based individualized illness therapy. GBM biomarkers have been investigated for their potential utility in prognostic stratification, driving the development of targeted therapy and customizing therapeutic treatment. Due to the availability of a specific EGFRvIII mutational variation with a clear function in glioma-genesis, recent research suggests that EGFR has the potential to be a prognostic factor in GBM, while others have shown no clinical link between EGFR and survival. The pre-existing pharmaceutical lapatinib (PubChem ID: 208,908) with a higher affinity score is used for virtual screening. As a result, the current study revealed a newly screened chemical (PubChem CID: 59,671,768) with a higher affinity than the previously known molecule. When the two compounds are compared, the former has the lowest re-rank score. The time-resolved features of a virtually screened chemical and an established compound were investigated using molecular dynamics simulation. Both compounds are equivalent, according to the ADMET study. This report implies that the virtual screened chemical could be a promising Glioblastoma therapy.
Collapse
Affiliation(s)
- Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Aditi Pande
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Ishita Chopra
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Lovely Soni
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Natchimuthu Vijayakumar
- Department of Physics, M.Kumarasamy College of Engineering, Karur, 639113, Tamil Nadu, India
| | - Umesh Panwar
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Mohd Aqueel Khan
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Leena Prajapati
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Deepika Gujrati
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, 500016, India
| | - Pranoti Belapurkar
- Department of Biosciences, Acropolis Institute, Indore, 453771, Madhya Pradesh, India
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Tajamul Hussain
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandrabose Selvaraj
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha College of Dental and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India.
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India.
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630003, Tamil Nadu, India.
- Department of Data Sciences, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Rd, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
3
|
Yadav M, Abdalla M, Madhavi M, Chopra I, Bhrdwaj A, Soni L, Shaheen U, Prajapati L, Sharma M, Sikarwar MS, Albogami S, Hussain T, Nayarisseri A, Singh SK. Structure-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation and Pharmacokinetic modelling of Cyclooxygenase-2 (COX-2) inhibitor for the clinical treatment of Colorectal Cancer. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2068799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Manasi Yadav
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, PR People’s Republic of China
| | - Maddala Madhavi
- Department of Zoology, Osmania University, Hyderabad, Telangana State, India
| | - Ishita Chopra
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, Madhya Pradesh, India
| | - Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Lovely Soni
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Uzma Shaheen
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Leena Prajapati
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Megha Sharma
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | | | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Tajamul Hussain
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, Madhya Pradesh, India
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
4
|
Mukherjee S, Abdalla M, Yadav M, Madhavi M, Bhrdwaj A, Khandelwal R, Prajapati L, Panicker A, Chaudhary A, Albrakati A, Hussain T, Nayarisseri A, Singh SK. Structure-Based Virtual Screening, Molecular Docking, and Molecular Dynamics Simulation of VEGF inhibitors for the clinical treatment of Ovarian Cancer. J Mol Model 2022; 28:100. [PMID: 35325303 DOI: 10.1007/s00894-022-05081-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
Vascular endothelial growth factor (VEGF) and its receptor play an important role both in physiologic and pathologic angiogenesis, which is identified in ovarian cancer progression and metastasis development. The aim of the present investigation is to identify a potential vascular endothelial growth factor inhibitor which is playing a crucial role in stimulating the immunosuppressive microenvironment in tumor cells of the ovary and to examine the effectiveness of the identified inhibitor for the treatment of ovarian cancer using various in silico approaches. Twelve established VEGF inhibitors were collected from various literatures. The compound AEE788 displays great affinity towards the target protein as a result of docking study. AEE788 was further used for structure-based virtual screening in order to obtain a more structurally similar compound with high affinity. Among the 80 virtual screened compounds, CID 88265020 explicates much better affinity than the established compound AEE788. Based on molecular dynamics simulation, pharmacophore and comparative toxicity analysis of both the best established compound and the best virtual screened compound displayed a trivial variation in associated properties. The virtual screened compound CID 88265020 has a high affinity with the lowest re-rank score and holds a huge potential to inhibit the VGFR and can be implemented for prospective future investigations in ovarian cancer.
Collapse
Affiliation(s)
- Sourav Mukherjee
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Cultural West Road, Jinan, Shandong Province, 250012, People's Republic of China
| | - Manasi Yadav
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Nizam College, Osmania University, Hyderabad, 500001, Telangana, India
| | - Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Leena Prajapati
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Aravind Panicker
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Aashish Chaudhary
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India.
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh, India.
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
5
|
Shen L, Liu F, Huang L, Liu G, Zhou L, Peng L. VDA-RWLRLS: An anti-SARS-CoV-2 drug prioritizing framework combining an unbalanced bi-random walk and Laplacian regularized least squares. Comput Biol Med 2022; 140:105119. [PMID: 34902608 PMCID: PMC8664497 DOI: 10.1016/j.compbiomed.2021.105119] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/08/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND A new coronavirus disease named COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is rapidly spreading worldwide. However, there is currently no effective drug to fight COVID-19. METHODS In this study, we developed a Virus-Drug Association (VDA) identification framework (VDA-RWLRLS) combining unbalanced bi-Random Walk, Laplacian Regularized Least Squares, molecular docking, and molecular dynamics simulation to find clues for the treatment of COVID-19. First, virus similarity and drug similarity are computed based on genomic sequences, chemical structures, and Gaussian association profiles. Second, an unbalanced bi-random walk is implemented on the virus network and the drug network, respectively. Third, the results of the random walks are taken as the input of Laplacian regularized least squares to compute the association score for each virus-drug pair. Fourth, the final associations are characterized by integrating the predictions from the virus network and the drug network. Finally, molecular docking and molecular dynamics simulation are implemented to measure the potential of screened anti-COVID-19 drugs and further validate the predicted results. RESULTS In comparison with six state-of-the-art association prediction models (NGRHMDA, SMiR-NBI, LRLSHMDA, VDA-KATZ, VDA-RWR, and VDA-BiRW), VDA-RWLRLS demonstrates superior VDA prediction performance. It obtains the best AUCs of 0.885 8, 0.835 5, and 0.862 5 on the three VDA datasets. Molecular docking and dynamics simulations demonstrated that remdesivir and ribavirin may be potential anti-COVID-19 drugs. CONCLUSIONS Integrating unbalanced bi-random walks, Laplacian regularized least squares, molecular docking, and molecular dynamics simulation, this work initially screened a few anti-SARS-CoV-2 drugs and may contribute to preventing COVID-19 transmission.
Collapse
Affiliation(s)
- Ling Shen
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412 007, Hunan, China
| | - Fuxing Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412 007, Hunan, China
| | - Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10 084, Beijing, China; The Future Laboratory, Tsinghua University, Beijing, 10 084, Beijing, China
| | - Guangyi Liu
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412 007, Hunan, China
| | - Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412 007, Hunan, China.
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412 007, Hunan, China; College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412 007, Hunan, China.
| |
Collapse
|
6
|
Nayarisseri A, Khandelwal R, Tanwar P, Madhavi M, Sharma D, Thakur G, Speck-Planche A, Singh SK. Artificial Intelligence, Big Data and Machine Learning Approaches in Precision Medicine & Drug Discovery. Curr Drug Targets 2021; 22:631-655. [PMID: 33397265 DOI: 10.2174/1389450122999210104205732] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
Artificial Intelligence revolutionizes the drug development process that can quickly identify potential biologically active compounds from millions of candidate within a short period. The present review is an overview based on some applications of Machine Learning based tools, such as GOLD, Deep PVP, LIB SVM, etc. and the algorithms involved such as support vector machine (SVM), random forest (RF), decision tree and Artificial Neural Network (ANN), etc. at various stages of drug designing and development. These techniques can be employed in SNP discoveries, drug repurposing, ligand-based drug design (LBDD), Ligand-based Virtual Screening (LBVS) and Structure- based Virtual Screening (SBVS), Lead identification, quantitative structure-activity relationship (QSAR) modeling, and ADMET analysis. It is demonstrated that SVM exhibited better performance in indicating that the classification model will have great applications on human intestinal absorption (HIA) predictions. Successful cases have been reported which demonstrate the efficiency of SVM and RF models in identifying JFD00950 as a novel compound targeting against a colon cancer cell line, DLD-1, by inhibition of FEN1 cytotoxic and cleavage activity. Furthermore, a QSAR model was also used to predict flavonoid inhibitory effects on AR activity as a potent treatment for diabetes mellitus (DM), using ANN. Hence, in the era of big data, ML approaches have been evolved as a powerful and efficient way to deal with the huge amounts of generated data from modern drug discovery to model small-molecule drugs, gene biomarkers and identifying the novel drug targets for various diseases.
Collapse
Affiliation(s)
- Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Ravina Khandelwal
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Poonam Tanwar
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Maddala Madhavi
- Department of Zoology, Nizam College, Osmania University, Hyderabad - 500001, Telangana State, India
| | - Diksha Sharma
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Garima Thakur
- In silico Research Laboratory, Eminent Biosciences, Mahalakshmi Nagar, Indore - 452010, Madhya Pradesh, India
| | - Alejandro Speck-Planche
- Programa Institucional de Fomento a la Investigacion, Desarrollo e Innovacion, Universidad Tecnologica Metropolitana, Ignacio Valdivieso 2409, P.O. 8940577, San Joaquin, Santiago, Chile
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi-630003, Tamil Nadu, India
| |
Collapse
|