1
|
Sharma K, Nayarisseri A, Singh SK. Biodegradation of plasticizers by novel strains of bacteria isolated from plastic waste near Juhu Beach, Mumbai, India. Sci Rep 2024; 14:30824. [PMID: 39730481 DOI: 10.1038/s41598-024-81239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Phthalic acid esters are pivotal plasticizers in various applications, including cosmetics, packaging materials, and medical devices. They have garnered significant attention from the scientific community due to their persistence in ecosystems. The multifaceted aspects of PAEs, encompassing leaching, transformation, and toxicity, underscore their prominence as primary components of anthropogenic waste. In this study, we conducted an extensive investigation to isolate and evaluate bacterial strains with the potential to degrade plasticizers from soil samples collected at JUHU Beach, Mumbai. The degradation capabilities of the isolates were meticulously assessed, and their characterization was performed using established microbiological protocols followed by Sanger dideoxy 16S rRNA sequencing. Four isolates demonstrating notable plasticizer degradation proficiency were subjected to in-depth examinations of their growth dynamics and tolerance thresholds. The biodegradation capabilities of these isolates were evaluated under varying pH, temperature, and plasticizer concentrations. Optimization of degradation rates was achieved through a central composite design experiment. Phenotypic characterization of the isolates was conducted through phylogenetic analysis. The isolates were identified as novel strains belonging to Brevibacillus brevis, Acinetobacter baumannii, Moraxella sp., and Halomonas sp. respectively. The novel isolates were submitted to GenBank with accession numbers OP984197, OQ690115, PP174910, and PP177540 respectively.
Collapse
Affiliation(s)
- Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Indore, 452 010, Madhya Pradesh, India
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, 452 010, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, 452010, Madhya Pradesh, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
2
|
An P, Yang C, Li W, Zhao D, Xiang H. The Isolation and Characterization of a Novel Psychrotolerant Cellulolytic Bacterium, Microbacterium sp. QXD-8 T. Microorganisms 2024; 12:303. [PMID: 38399707 PMCID: PMC10892437 DOI: 10.3390/microorganisms12020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
Cellulolytic microorganisms play a crucial role in agricultural waste disposal. Strain QXD-8T was isolated from soil in northern China. Similarity analyses of the 16S rRNA gene, as well as the 120 conserved genes in the whole-genome sequence, indicate that it represents a novel species within the genus Microbacterium. The Microbacterium sp. QXD-8T was able to grow on the CAM plate with sodium carboxymethyl cellulose as a carbon source at 15 °C, forming a transparent hydrolysis circle after Congo red staining, even though the optimal temperature for the growth and cellulose degradation of strain QXD-8T was 28 °C. In the liquid medium, it effectively degraded cellulose and produced reducing sugars. Functional annotation revealed the presence of encoding genes for the GH5, GH6, and GH10 enzyme families with endoglucanase activity, as well as the GH1, GH3, GH39, and GH116 enzyme families with β-glucosidase activity. Additionally, two proteins in the GH6 family, one in the GH10, and two of nine proteins in the GH3 were predicted to contain a signal peptide and transmembrane region, suggesting their potential for extracellularly degrade cellulose. Based on the physiological features of the type strain QXD-8T, we propose the name Microbacterium psychrotolerans for this novel species. This study expands the diversity of psychrotolerant cellulolytic bacteria and provides a potential microbial resource for straw returning in high-latitude areas at low temperatures.
Collapse
Affiliation(s)
- Peng An
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (P.A.); (W.L.)
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Changjialian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (P.A.); (W.L.)
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Karnwal A, Shrivastava S, Al-Tawaha ARMS, Kumar G, Singh R, Kumar A, Mohan A, Yogita, Malik T. Microbial Biosurfactant as an Alternate to Chemical Surfactants for Application in Cosmetics Industries in Personal and Skin Care Products: A Critical Review. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2375223. [PMID: 37090190 PMCID: PMC10118887 DOI: 10.1155/2023/2375223] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023]
Abstract
Cosmetics and personal care items are used worldwide and administered straight to the skin. The hazardous nature of the chemical surfactant utilized in the production of cosmetics has caused alarm on a global scale. Therefore, bacterial biosurfactants (BS) are becoming increasingly popular in industrial product production as a biocompatible, low-toxic alternative surfactant. Chemical surfactants can induce allergic responses and skin irritations; thus, they should be replaced with less harmful substances for skin health. The cosmetic industry seeks novel biological alternatives to replace chemical compounds and improve product qualities. Most of these chemicals have a biological origin and can be obtained from plant, bacterial, fungal, and algal sources. Various biological molecules have intriguing capabilities, such as biosurfactants, vitamins, antioxidants, pigments, enzymes, and peptides. These are safe, biodegradable, and environmentally friendly than chemical options. Plant-based biosurfactants, such as saponins, offer numerous advantages over synthetic surfactants, i.e., biodegradable, nontoxic, and environmentally friendly nature. Saponins are a promising source of natural biosurfactants for various industrial and academic applications. However, microbial glycolipids and lipopeptides have been used in biotechnology and cosmetics due to their multifunctional character, including detergency, emulsifying, foaming, and skin moisturizing capabilities. In addition, some of them have the potential to be used as antibacterial agents. In this review, we like to enlighten the application of microbial biosurfactants for replacing chemical surfactants in existing cosmetic and personal skincare pharmaceutical formulations due to their antibacterial, skin surface moisturizing, and low toxicity characteristics.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Seweta Shrivastava
- Department of Plant Pathology, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | | | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rattandeep Singh
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anupam Kumar
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anand Mohan
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yogita
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| |
Collapse
|
4
|
Nayarisseri A, Bhrdwaj A, Khan A, Sharma K, Shaheen U, Selvaraj C, Khan MA, Abhirami R, Pravin MA, Shri GR, Raje D, Singh SK. Promoter–motif extraction from co-regulated genes and their relevance to co-expression using E. coli as a model. Brief Funct Genomics 2023; 22:204-216. [PMID: 37053503 DOI: 10.1093/bfgp/elac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 10/26/2022] [Indexed: 02/04/2023] Open
Abstract
Abstract
Gene expression varies due to the intrinsic stochasticity of transcription or as a reaction to external perturbations that generate cellular mutations. Co-regulation, co-expression and functional similarity of substances have been employed for indoctrinating the process of the transcriptional paradigm. The difficult process of analysing complicated proteomes and biological switches has been made easier by technical improvements, and microarray technology has flourished as a viable platform. Therefore, this research enables Microarray to cluster genes that are co-expressed and co-regulated into specific segments. Copious search algorithms have been employed to ascertain diacritic motifs or a combination of motifs that are performing regular expression, and their relevant information corresponding to the gene patterns is also documented. The associated genes co-expression and relevant cis-elements are further explored by engaging Escherichia coli as a model organism. Various clustering algorithms have also been used to generate classes of genes with similar expression profiles. A promoter database ‘EcoPromDB’ has been developed by referring RegulonDB database; this promoter database is freely available at www.ecopromdb.eminentbio.com and is divided into two sub-groups, depending upon the results of co-expression and co-regulation analyses.
Collapse
Affiliation(s)
- Anuraj Nayarisseri
- Eminent Biosciences In silico Research Laboratory, , 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh , India
- LeGene Biosciences Pvt Ltd Bioinformatics Research Laboratory, , 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh , India
- Alagappa University Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, , Karaikudi, 630003, Tamil Nadu , India
| | - Anushka Bhrdwaj
- Eminent Biosciences In silico Research Laboratory, , 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh , India
- Alagappa University Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, , Karaikudi, 630003, Tamil Nadu , India
| | - Arshiya Khan
- Eminent Biosciences In silico Research Laboratory, , 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh , India
- Alagappa University Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, , Karaikudi, 630003, Tamil Nadu , India
| | - Khushboo Sharma
- Eminent Biosciences In silico Research Laboratory, , 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh , India
- Alagappa University Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, , Karaikudi, 630003, Tamil Nadu , India
| | - Uzma Shaheen
- Eminent Biosciences In silico Research Laboratory, , 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh , India
| | - Chandrabose Selvaraj
- Alagappa University Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, , Karaikudi, 630003, Tamil Nadu , India
| | - Mohammad Aqueel Khan
- Alagappa University Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, , Karaikudi, 630003, Tamil Nadu , India
| | - Rajaram Abhirami
- Alagappa University Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, , Karaikudi, 630003, Tamil Nadu , India
| | - Muthuraja Arun Pravin
- Alagappa University Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, , Karaikudi, 630003, Tamil Nadu , India
| | - Gurunathan Rubha Shri
- Alagappa University Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, , Karaikudi, 630003, Tamil Nadu , India
| | - Dhanjay Raje
- Eminent Biosciences In silico Research Laboratory, , 91, Sector-A, Mahalakshmi Nagar, Indore, 452010, Madhya Pradesh , India
| | - Sanjeev Kumar Singh
- Alagappa University Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, , Karaikudi, 630003, Tamil Nadu , India
- Department of Data Sciences, Centre of Biomedical Research , SGPGIMS Campus, Raebareli Rd, Lucknow 226014, India
| |
Collapse
|