1
|
Zhang P, Liu H, Yu Y, Peng S, Zeng A, Song L. Terpenoids mediated cell apoptotsis in cervical cancer: Mechanisms, advances and prospects. Fitoterapia 2024; 180:106323. [PMID: 39631509 DOI: 10.1016/j.fitote.2024.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Cervical cancer remains one of the most common malignancies among women globally, causing hundreds of thousands of deaths annually. Despite widespread vaccination and screening programs, the incidence of cervical cancer remains high in developing countries. OBJECTIVE This review aims to systematically summarize the existing terpenoids effective in preventing cervical cancer, elucidate their potential mechanisms in the prophylaxis and treatment of cervical cancer, and assess the limitations of current studies. RESULTS Studies have shown that terpenoids can decrease the incidence of cervical cancer and promote apoptosis of cancer cells through various signaling pathways, including the PI3K/AKT pathway, the endoplasmic reticulum stress (ERS) pathway, and the mitochondria- and caspase-dependent cell death pathways. Furthermore, some terpenoids have been found to enhance the sensitivity to chemotherapy drugs, thus improving patients' quality of life. CONCLUSION Terpenoids play a significant role in inhibiting the progression of cervical cancer. However, due to their diversity and complex mechanisms of action, further research is necessary to investigate their specific targets and bioactivities to advance their clinical trials and applications.
Collapse
Affiliation(s)
- Peng Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Hong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Yuan Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Shiyang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, PR China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
2
|
He Y, Ding J, Liu L, Chen J, Zhong H, Li C, Xu X. Investigation of TSRP reverses imatinib resistance through the PI3K / Akt pathway in chronic myeloid leukemia. Ann Hematol 2024:10.1007/s00277-024-06099-8. [PMID: 39586883 DOI: 10.1007/s00277-024-06099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Chronic myelogenous leukemia (CML) is a malignant tumor of the blood system, so far there is no effective cure. Imatinib (IM), as the first-line drug for the clinical targeted treatment of CML, has some limiting factors such as drug resistance and relapse, and drug resistance has also emerged in combination with other drugs. At present, traditional Chinese medicine combined with targeted drugs in the treatment of tumor is a research hotspot. The total saponin of L. (TSRP) has an effective anti-tumor activity. Our previous in vitro experiments showed that TSRP can effectively inhibit the proliferation and promote apoptosis of CML cells K562, suggesting that TSRP can effectively reverse the drug resistance of IM, but the mechanism of drug resistance remains unclear. Studies have shown that the PI3K/AKT pathway is the main activation pathway of IM secondary resistance, and is considered to be an innovative therapeutic strategy for targeted cancer treatment, which may be an important mechanism of IM resistance. This project aims to reveal the possible mechanism of TSRP reversing IM resistance through PI3K/AKT signaling pathway through both in vitro and in vivo experiments, providing experimental basis for TSRP combined with IM treatment of CML.
Collapse
Affiliation(s)
- Ying He
- Department of Traditional Chinese Medicine (TCM) Pharmacy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310003, China
- Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Jiyuan Ding
- Department of Traditional Chinese Medicine (TCM) Pharmacy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310003, China
- Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Liqin Liu
- Department of Traditional Chinese Medicine (TCM) Pharmacy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310003, China
- Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Jiajun Chen
- Department of Traditional Chinese Medicine (TCM) Pharmacy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310003, China
- Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Hong Zhong
- Department of Traditional Chinese Medicine (TCM) Pharmacy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310003, China
- Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Xiaofeng Xu
- Department of Traditional Chinese Medicine (TCM) Pharmacy, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310003, China.
- Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Fan Y, Wang Y, Zhang W, Xie K. From bioinformatics to anti-inflammation and immune regulation: ACT001 in lipopolysaccharide-induced lung injury. Allergol Immunopathol (Madr) 2024; 52:151-161. [PMID: 39515811 DOI: 10.15586/aei.v52i6.1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND ACT001 is a potent anti-inflammatory small-molecule drug. However, the single cell and spatial molecular basis of pyroptosis and whether ACT001 exerts a therapeutic effect by preventing pyroptosis on acute lung injury (ALI) remains unclear. METHODS The bioinformatics approach was employed to identify single cell and spatial landscape of nucleotide-binding domains and leucine-rich repeat protein 3 (NLRP3)-dependent pyroptosis in lipopolysaccharide (LPS) and influenza virus-induced ALI. Molecular docking was performed to elucidate the relationship between ACT001 and NLRP3. LPS-induced ALI mice model was established. Histopathological analysis and bronchoalveolar lavage fluid collection were conducted to investigate the anti-inflammatory and protective effects. In vitro experiments were also performed on bone marrow-derived macrophages to explore the effect of ACT001 on the balance of mitochondrial fusion and fission protein. RESULTS Single cell transcriptomic and spatial transcriptomic analysis predicted that NLRP3-dependent pyroptosis significantly correlated with the development of ALI both in single cell and spatial distribution. Molecular docking provided a stable and reliable docking between ACT001 and NLRP3. ACT001 improved the 7-day survival of mice by approximately 50% over the loading dose of LPS-induced ALI. ACT001 (5 uM) attenuated the disruption of mitochondrial integrity and reactive oxygen species. Further, ACT001 reduced the overexpression of the mitochondrial fission protein DRP1 without affecting fusion protein Mitofusin2 levels. Moreover, ACT001 exerted a similar protective effect of suppressing pyroptosis as the DRP1-inhibitor Mdivi-1. CONCLUSIONS Our study revealed that pyroptosis genes were highly expressed in single-cell and spatial mapping along the first week of ALI occurrence. ACT001 attenuates ALI by reducing the NLRP3-dependent pyroptosis and balancing mitochondrial fission and fusion.
Collapse
Affiliation(s)
- Yan Fan
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanlin Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Weiwei Zhang
- School of Medicine, NanKai University, Tianjin, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China;
| |
Collapse
|
4
|
Minaei E, Ranson M, Aghmesheh M, Sluyter R, Vine KL. Enhancing pancreatic cancer immunotherapy: Leveraging localized delivery strategies through the use of implantable devices and scaffolds. J Control Release 2024; 373:145-160. [PMID: 38996923 DOI: 10.1016/j.jconrel.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Pancreatic cancer (PC) remains the predominant type of upper gastrointestinal tract cancer, associated with heightened morbidity and a survival rate below 12%. While immunotherapy has brought about transformative changes in the standards of care for most solid tumors, its application in PC is hindered by the ''cold tumor'' microenvironment, marked by the presence of immunosuppressive cells. Modest response rates in PC are attributed, in part to, the fibrotic stroma that obstructs the delivery of systemic immunotherapy. Furthermore, the occurrence of immune-related adverse events (iRAEs) often necessitates the use of sub-therapeutic doses or treatment discontinuation. In the pursuit of innovative approaches to enhance the effectiveness of immunotherapy for PC, implantable drug delivery devices and scaffolds emerge as promising strategies. These technologies offer the potential for sustained drug delivery directly to the tumor site, overcoming stromal barriers, immunosuppression, T cell exclusion, immunotherapy resistance, optimizing drug dosage, and mitigating systemic toxicity. This review offers a comprehensive exploration of pancreatic ductal adenocarcinoma (PDAC), the most common and aggressive form of PC, accompanied by a critical analysis of the challenges the microenvironment presents to the development of successful combinational immunotherapy approaches. Despite efforts, these approaches have thus far fallen short in enhancing treatment outcomes for PDAC. The review will subsequently delve into the imperative need for refining delivery strategies, providing an examination of past and ongoing studies in the field of localized immunotherapy for PDAC. Addressing these issues will lay the groundwork for the development of effective new therapies, thereby enhancing treatment response, patient survival, and overall quality of life for individuals diagnosed with PDAC.
Collapse
Affiliation(s)
- E Minaei
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - M Ranson
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - M Aghmesheh
- Nelune Comprehensive Cancer Centre, Bright Building, Prince of Wales Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - R Sluyter
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - K L Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
5
|
Wang Y, Li N, Qu L, Zhang M, Li Z, Li X, Cai D. Hemoglobin nanoclusters-mediated regulation of KPNA4 in hypoxic tumor microenvironment enhances photodynamic therapy in hepatocellular carcinoma. J Nanobiotechnology 2024; 22:473. [PMID: 39135024 PMCID: PMC11318167 DOI: 10.1186/s12951-024-02717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant tumor known for its hypoxic environment, which contributes to resistance against the anticancer drug Sorafenib (SF). Addressing SF resistance in HCC requires innovative strategies to improve tumor oxygenation and effectively deliver therapeutics. RESULTS In our study, we explored the role of KPNA4 in mediating hypoxia-induced SF resistance in HCC. We developed hemoglobin nanoclusters (Hb-NCs) capable of carrying oxygen, loaded with indocyanine green (ICG) and SF, named HPRG@SF. In vitro, HPRG@SF targeted HCC cells, alleviated hypoxia, suppressed KPNA4 expression, and enhanced the cytotoxicity of PDT against hypoxic, SF-resistant HCC cells. In vivo experiments supported these findings, showing that HPRG@SF effectively improved the oxygenation within the tumor microenvironment and countered SF resistance through combined photodynamic therapy (PDT). CONCLUSION The combination of Hb-NCs with ICG and SF, forming HPRG@SF, presents a potent strategy to overcome drug resistance in hepatocellular carcinoma by improving hypoxia and employing PDT. This approach not only targets the hypoxic conditions that underlie resistance but also provides a synergistic anticancer effect, highlighting its potential for clinical applications in treating resistant HCC.
Collapse
Affiliation(s)
- Yiliang Wang
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Nu Li
- Department of breast surgery, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Letian Qu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Mu Zhang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Zhuo Li
- The Fourth People's Hospital of Shenyang, 110002, Liaoning Province, China
| | - Xiang Li
- Department of Neurosurgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| | - Dasheng Cai
- Department of Anesthesiology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
6
|
Zhou X, Tan F, Zhang S, Wang A, Zhang T. A Strategy based on Bioinformatics and Machine Learning Algorithms Reveals Potential Mechanisms of Shelian Capsule against Hepatocellular Carcinoma. Curr Pharm Des 2024; 30:377-405. [PMID: 38310567 DOI: 10.2174/0113816128284465240108071554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent and life-threatening form of cancer, with Shelian Capsule (SLC), a traditional Chinese medicine (TCM) formulation, being recommended for clinical treatment. However, the mechanisms underlying its efficacy remain elusive. This study sought to uncover the potential mechanisms of SLC in HCC treatment using bioinformatics methods. METHODS Bioactive components of SLC were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and HCC-related microarray chip data were sourced from the Gene Expression Omnibus (GEO) database. The selection criteria for components included OB ≧ 30% and DL ≧ 0.18. By integrating the results of differential expression analysis and weighted gene co-expression network analysis (WGCNA), disease-related genes were identified. Therapeutic targets were determined as shared items between candidate targets and disease genes. Protein-protein interaction (PPI) network analysis was conducted for concatenated genes, with core protein clusters identified using the MCODE plugin. Machine learning algorithms were applied to identify signature genes within therapeutic targets. Subsequently, immune cell infiltration analysis, single-cell RNA sequencing (sc-RNA seq) analysis, molecular docking, and ADME analysis were performed for the screened genes. RESULTS A total of 153 SLC ingredients and 170 candidate targets were identified, along with 494 HCCrelated disease genes. Overlapping items between disease genes and drug candidates represented therapeutic genes, and PPI network analysis was conducted using concatenated genes. MCODE1 and MCODE2 cluster genes underwent Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Four signature genes (TOP2A, CYP1A2, CYP2B6, and IGFBP3) were identified from 28 therapeutic genes using 3 machine learning algorithms, with ROC curves plotted. Molecular docking validated the interaction modes and binding abilities between signature genes and corresponding compounds, with free binding energy all <-7 kcal/mol. Finally, ADME analysis revealed similarities between certain SLC components and the clinical drugs Sorafenib and Lenvatinib. CONCLUSION In summary, our study revealed that the mechanism underlying the anti-HCC effects of SLC involves interactions at three levels: components (quercetin, beta-sitosterol, kaempferol, baicalein, stigmasterol, and luteolin), pathways (PI3K-Akt signaling pathway, TNF signaling pathway, and IL-17 signaling pathway), and targets (TOP2A, CYP1A2, CYP2B6, and IGFBP3). This study provides preliminary insights into the potential pharmacological mechanisms of SLC in HCC treatment, aiming to support its clinical application and serve as a reference for future laboratory investigations.
Collapse
Affiliation(s)
- Xianqiang Zhou
- Department of Traditional Chinese Medicine, Shanghai Medical College, Jing'an District Central Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Pulmonary Diseases, Shanghai Medical College, Jing'an District Hospital of Traditional Chinese Medicine, Shanghai 200072, China
| | - Fang Tan
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, Anhui Province, China
| | - Suxian Zhang
- Department of Traditional Chinese Medicine, Shanghai Medical College, Jing'an District Central Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - An'an Wang
- Department of Pulmonary Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tiansong Zhang
- Department of Traditional Chinese Medicine, Shanghai Medical College, Jing'an District Central Hospital Affiliated to Fudan University, Shanghai 200040, China
- Department of Pulmonary Diseases, Shanghai Medical College, Jing'an District Hospital of Traditional Chinese Medicine, Shanghai 200072, China
| |
Collapse
|
7
|
Tan N, Zhao W, Wang Y, Li P, Liu J, Sun Z, Pan J, Song S, Li S, Liu Z, Bian Y. AHR, a novel inhibitory immune checkpoint receptor, is a potential therapeutic target for chemoresistant glioblastoma. J Cancer Res Clin Oncol 2023; 149:9705-9720. [PMID: 37233762 DOI: 10.1007/s00432-023-04894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE This study aims to elucidate the mechanism underlying temozolomide resistance in patients with MGMT promoter hypomethylated glioblastoma, which is correlated with poor prognosis. The objective is to identify therapeutic targets and drugs suitable for temozolomide-resistant glioblastoma patients using big data analysis. METHODS In this retrospective study, transcriptome sequencing data from 457 glioblastoma patients, multi-omics data, and single-cell sequencing data were employed to assess the expression pattern, prognostic value, and biological functions of AHR in glioblastoma. The HERB database was utilized to screen for AHR-targeted drugs for glioblastoma treatment. Validation of our findings was conducted using multiplex immunofluorescence staining of clinical samples and T cells and tumor cells co-culture models. RESULTS Our findings demonstrated that patients with MGMT promoter unmethylation did not benefit from postoperative temozolomide chemotherapy due to resistance arising from DNA repair function and tumor immune response. AHR was found to be expressed in immune cells and exhibited an immunomodulatory role in glioblastoma with MGMT promoter unmethylation. AHR was identified as a potential novel inhibitory immune checkpoint receptor, serving as a therapeutic target for temozolomide-resistant glioblastoma. Furthermore, targeting AHR with Semen aesculi markedly enhanced the cytotoxic effect of T cells on glioma cells. CONCLUSIONS In addition to DNA repair function, the tumor immune response plays a pivotal role in temozolomide resistance of glioblastoma. Herbal compounds targeting AHR may offer an effective treatment for temozolomide-resistant glioblastoma.
Collapse
Affiliation(s)
- Nian Tan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, People's Republic of China.
| | - Wei Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, People's Republic of China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, People's Republic of China
| | - Ping Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, People's Republic of China
| | - Jianwei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, People's Republic of China
| | - Zhaoying Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, People's Republic of China
| | - Jianming Pan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, People's Republic of China
| | - Shilin Song
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, People's Republic of China
| | - Shunyao Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, People's Republic of China
| | - Ziyi Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, People's Republic of China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, People's Republic of China.
| |
Collapse
|
8
|
Yan J, Deng XL, Ma SQ, Hui Li Y, Gao YM, Shi GT, Wang HS. Cantharidin suppresses hepatocellular carcinoma development by regulating EZH2/H3K27me3-dependent cell cycle progression and antitumour immune response. BMC Complement Med Ther 2023; 23:160. [PMID: 37202806 DOI: 10.1186/s12906-023-03975-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Cantharidin (CTD) is a major ingredient of cantharis (Mylabris phalerata Pallas) and has been used extensively in traditional Chinese medicines. It has been shown to exhibit anticancer activity in multiple types of cancer, especially hepatocellular carcinoma (HCC). However, there is no systematic study on the relationships among the regulatory networks of its targets in HCC therapy. We focused on histone epigenetic regulation and the influence of CTD on the immune response in HCC. METHODS We performed a comprehensive analysis of novel CTD targets in HCC based on network pharmacology and RNA-seq approaches. The mRNA levels of target genes were analyzed by qRT-PCR, and the corresponding protein levels were confirmed using enzyme-linked immunosorbent assay (ELISA) and immunohistochemical staining (IHC). ChIP-seq data were visualized by IGV software. The associations of gene transcript levels with the cancer immune score and infiltration level were investigated using TIMER. In vivo, the H22 mouse model of hepatocellular carcinoma was established by treatment with CTD and 5-Fu. The immune cell proportions in the blood were elevated in model mice, as shown by flow cytometry. RESULTS We identified 58 targets of CTD, which were involved in various pathways in cancer, including apoptosis, the cell cycle, EMT and immune pathways. Moreover, we found that 100 EMT-related genes were differentially expressed after CTD treatment in HCC cells. Interestingly, our results confirmed that the EZH2/H3K27me3 -related cell cycle pathway is a therapeutic target of CTD in antitumour. In addition, we evaluated the influence of CTD on the immune response. Our data showed that the significantly enriched gene sets were positively correlated with the chemokine biosynthetic and chemokine metabolic modules. The proportions of CD4+/CD8 + T cells and B cells were increased, but the proportion of Tregs was decreased after treatment with CTD in vivo. Moreover, we found that the expression of the inflammatory factor and immune checkpoint genes PD-1/PD-L1 was significantly reduced in the mouse model. CONCLUSION We performed a novel integrated analysis of the potential role of CTD in HCC treatment. Our results provide innovative insight into the mechanism by which cantharidin exerts antitumour effects by regulating target genes expression to mediate apoptosis, EMT, cell cycle progression and the immune response in HCC. Based on the effect of CTD on the immune response, it can be used as a potential effective drug to activate antitumour immunity for the treatment of liver cancer.
Collapse
Affiliation(s)
- Jia Yan
- School of Basic medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xiu Ling Deng
- School of Basic medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shi Qi Ma
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, Inner Mongolia, China
| | - Yu Hui Li
- School of Basic medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yu Min Gao
- School of Public health, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Gui Tao Shi
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| | - Hai Sheng Wang
- School of Basic medical, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
9
|
Zhao D, Chen X, Wang L, Zhang J, Lv R, Tan L, Chen Y, Tao R, Li X, Chen Y, He W, He J. Improvement influenza vaccine immune responses with traditional Chinese medicine and its active ingredients. Front Microbiol 2023; 14:1111886. [PMID: 36960292 PMCID: PMC10027775 DOI: 10.3389/fmicb.2023.1111886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
The current influenza vaccines are unable to provide effective protection in many cases, like influenza viruses strain antigenic drift or shift, and the influenza continues to cause significant annual morbidity and mortality. Improving the immune response to influenza vaccination is an unmet need. Traditional Chinese medicine (TCM) and its active ingredients are commonly known to have immunomodulatory properties. We therefore compared influenza vaccination alone or formulated with Astragali Radix (Huangqi in Chinese), and several representative ingredients of TCM, including lentinan (polysaccharide), panax notoginseng saponins (saponin), breviscapine (flavone), andrographolide (terpenoid), and a Chinese herbal compound (kangai) for their potential to enhance immune responses to influenza vaccine in mice. We found that all these TCM-adjuvants were able to increase hemagglutination inhibition (HAI) antibody titers, splenocyte proliferation, splenic T cell differentiation, bone marrow dendritic cell maturity, and both Th1 and Th2 cytokine secretion of influenza vaccine to varying degrees, and that had the characteristics of no excessive inflammatory responses and bidirectional regulation simultaneously. Taken together, our findings show that Astragali Radix exerts a more comprehensive effect on vaccine immunity, on both innate and adaptive immunity. The effects of lentinan and andrographolide on adaptive immunity were more significant, while the effects of breviscapine on innate immunity were stronger, and the other two TCM adjuvants were weaker. As the first report of a comprehensive evaluation of TCM adjuvants in influenza vaccines, the results suggest that TCM and their active ingredients are good candidates for enhancing the immune response of influenza vaccines, and that suitable TCMs can be selected based on the adjuvant requirements of different vaccines.
Collapse
Affiliation(s)
- Danping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuhong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang, ; Jianjun Zhang,
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang, ; Jianjun Zhang,
| | - Ruilin Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lingyun Tan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yawen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei He
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Pu Q, Yu L, Wang X, Yan H, Xie Y, Jiang Y, Yang Z. Immunomodulatory Effect of Traditional Chinese Medicine Combined with Systemic Therapy on Patients with Liver Cancer: A Systemic Review and Network Meta-analysis. J Cancer 2022; 13:3280-3296. [PMID: 36118529 PMCID: PMC9475362 DOI: 10.7150/jca.74829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: As immune combination therapy in the treatment of liver cancer made significant achievements, and the modulating effect of traditional Chinese medicine (TCM) on immunity gradually appeared. The main purpose of this study was to study the effect of different TCM combined with systemic therapy (ST) on immune regulation in patients with liver cancer, as well as the efficacy and safety of combined therapy, and to find the best combined application scheme by ranking. Methods: Nine electronic databases were searched from January 1, 2010, to November 12, 2021, to search for RCTs of TCM combined ST in the field of liver cancer for literature screening, quality evaluation and data extraction. STATA 15.0 and RevMan 5.3 software were used to conduct network meta-analysis to analyze and explore the significance of TCM combined ST in immune regulation, efficacy and safety in clinical application. The probability value of the surface under the cumulative ranking curve was used to rank the processing studied. Results: A total of 25 studies involving 2,152 participants were included in the network meta-analysis, including six traditional Chinese medicine injections and seven proprietary Chinese medicines. The results showed that Dahuang Zhechong Wan and Kangai injection combined with ST were the best choices for immune regulation. Moreover, the Huaier granule was the best choice to reduce vascular endothelial growth factors. Conclusion: For patients with liver cancer, TCM combined with ST was better than that of ST alone and can significantly improve the immune function of patients as well as the efficacy and safety of treatment. However, given the limited sample size and methodological quality of the trials that we included in our study, more centralized and randomized controlled trials with a large sample size are required to verify our findings.
Collapse
Affiliation(s)
- Qing Pu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Effects of Traditional Chinese Medicine Adjuvant Therapy on the Survival of Patients with Primary Liver Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9810036. [PMID: 35341138 PMCID: PMC8947932 DOI: 10.1155/2022/9810036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
Abstract
Aim This study aims to evaluate whether adjuvant traditional Chinese medicine (TCM) can improve the survival of patients with primary liver cancer (PLC). Methods A total of 1,859 patients with PLC at Beijing Ditan Hospital between August 2008 and September 2017 were included. The patients were divided into TCM and control groups according to whether the patients took TCM for ≥3 months. There were 1,111 patients in the TCM group and 748 in the control group. Univariate and multivariate Cox regression analyses were used to analyze the factors affecting the 3-year survival of patients with PLC. To reduce selection bias, 1 : 1 propensity score matching (PSM) was performed between the two groups. The overall survival outcomes were evaluated using the Kaplan-Meier (K-M) survival curve, and the log-rank test was used to compare the differences in survival curves. Results After multivariate Cox regression analysis, TCM was an independent favorable factor for the 3-year survival of patients with PLC (adjusted hazard ratio (aHR) 0.359, 95% confidence interval (CI) 0.292-0.441, P < 0.001). Before and after PSM, the 3-year overall survival rates were 33.3% and 54% in the control group and 79.7% and 69.7% in the TCM group, respectively. The 3-year mortality risk in the TCM group was lower than that in the control group for different PLC subgroups. Conclusions TCM adjuvant therapy increased the 3-year overall survival rate of patients with PLC.
Collapse
|
12
|
Zhu Y, Shan D, Guo L, Chen S, Li X. Immune-Related lncRNA Pairs Clinical Prognosis Model Construction for Hepatocellular Carcinoma. Int J Gen Med 2022; 15:1919-1931. [PMID: 35237066 PMCID: PMC8882675 DOI: 10.2147/ijgm.s343350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plays an essential regulatory role in the occurrence and development of hepatocellular carcinoma (HCC). This paper aims to establish an immune-related lncRNA (irlncRNA) pairs model independent of expression level for risk assessment and prognosis prediction of HCC. Methods Transcriptome data and corresponding clinical data were downloaded from TCGA. HCC patients were randomly divided into training group and test group. Univariate Cox regression analysis, LASSO regression analysis, and stepwise multiple Cox regression analysis were used to establish a prognostic model. The prediction ability of the model was verified by ROC curves. Next, the patients were divided into low-risk and high-risk groups. We compared the differences between the two groups in survival rate, clinicopathological characteristics, tumor immune cell infiltration status, chemotherapeutic drug sensitivity and immunosuppressive molecules. Results A prognosis prediction model was established based on 7 irlncRNA pairs, namely irlncRNA pairs (IRLP). ROC curves of the training group and test group showed that the IRLP model had high sensitivity and specificity for survival prediction. Kaplan–Meier analysis showed that the survival rate of the high-risk group was significantly lower than that of the low-risk group. Immune cell infiltration analysis showed that the high-risk group was significantly correlated with various immune cell infiltration. Finally, there were statistically significant differences in chemosensitivity and molecular marker expression between the two groups. Conclusion The prognosis prediction model established by irlncRNA pairs has a certain guiding significance for the prognosis prediction of HCC. It may provide valuable clinical applications in antitumor immunotherapy.
Collapse
Affiliation(s)
- Yinghui Zhu
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Dezhi Shan
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
| | - Lianyi Guo
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Shujia Chen
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Xiaofei Li
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
- Correspondence: Xiaofei Li, Jinzhou, Liaoning, 121000, People’s Republic of China, Email
| |
Collapse
|