1
|
Doraghi F, Taherkhani AM, Hosseinifar T, Rashidi Ranjbar P, Larijani B, Mahdavi M. Transition metal-catalyzed transformations of 2-formylarylboronic acids. Org Biomol Chem 2024; 22:6905-6921. [PMID: 39140460 DOI: 10.1039/d4ob01024h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
2-Formylarylboronic acids are easily available precursors in organic chemistry. Different types of transition metal catalysts, such as Pd(0), Pd(II), Rh(I), Ir(I), Ni(II), Cu(I), Cu(II), and Co(II), can efficiently catalyze coupling reactions of 2-formylarylboronic acids with other organic reactants. In this review, we describe the synthesis of a diverse range of carbocyclic and heterocyclic compounds, as well as acyclic compounds, via transition metal-catalyzed reactions of 2-formylarylboronic acids over the past two decades.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Mohammad Taherkhani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Tolou Hosseinifar
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Doostmohammadi A, Jooya H, Ghorbanian K, Gohari S, Dadashpour M. Potentials and future perspectives of multi-target drugs in cancer treatment: the next generation anti-cancer agents. Cell Commun Signal 2024; 22:228. [PMID: 38622735 PMCID: PMC11020265 DOI: 10.1186/s12964-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer is a major public health problem worldwide with more than an estimated 19.3 million new cases in 2020. The occurrence rises dramatically with age, and the overall risk accumulation is combined with the tendency for cellular repair mechanisms to be less effective in older individuals. Conventional cancer treatments, such as radiotherapy, surgery, and chemotherapy, have been used for decades to combat cancer. However, the emergence of novel fields of cancer research has led to the exploration of innovative treatment approaches focused on immunotherapy, epigenetic therapy, targeted therapy, multi-omics, and also multi-target therapy. The hypothesis was based on that drugs designed to act against individual targets cannot usually battle multigenic diseases like cancer. Multi-target therapies, either in combination or sequential order, have been recommended to combat acquired and intrinsic resistance to anti-cancer treatments. Several studies focused on multi-targeting treatments due to their advantages include; overcoming clonal heterogeneity, lower risk of multi-drug resistance (MDR), decreased drug toxicity, and thereby lower side effects. In this study, we'll discuss about multi-target drugs, their benefits in improving cancer treatments, and recent advances in the field of multi-targeted drugs. Also, we will study the research that performed clinical trials using multi-target therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Ali Doostmohammadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Kimia Ghorbanian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sargol Gohari
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Sun X, Xie Z, Lei X, Huang S, Tang G, Wang Z. Research and development of N, N'-diarylureas as anti-tumor agents. RSC Med Chem 2023; 14:1209-1226. [PMID: 37484562 PMCID: PMC10357950 DOI: 10.1039/d3md00053b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor neovascularization provides abundant nutrients for the occurrence and development of tumors, and is also an important factor in tumor invasion and metastasis, which has attracted extensive attention in anti-tumor therapy. Sorafenib is a clinically approved multi-targeted anti-tumor drug that targets vascular endothelial growth factor receptor (VEGFR) and inhibits the formation of tumor angiogenesis, thereby achieving the purpose of suppressing tumor growth. Since the approval of sorafenib, N,N'-diarylureas have received extensive attention as the key pharmacophore in its chemical structure. And a series of N,N'-diarylureas were designed and synthesized to screen a new generation of anti-tumor drug candidates through chemical modification and structural optimization. Moreover, the rational design of targeted drugs is beneficial to reduce toxic side effects and drug resistance and improve the curative effect. Here, this article reviews the research progress in the design, classification, structure-activity relationship (SAR) and biological activity of N,N'-diarylureas, in order to provide some prospective routes for the development of clinically effective anti-tumor drugs.
Collapse
Affiliation(s)
- Xueyan Sun
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Sheng Huang
- Jiuzhitang Co., Ltd Changsha Hunan 410007 China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China Hengyang 421001 Hunan China
| |
Collapse
|
4
|
Solovyeva EM, Bubis JA, Tarasova IA, Lobas AA, Ivanov MV, Nazarov AA, Shutkov IA, Gorshkov MV. On the Feasibility of Using an Ultra-Fast DirectMS1 Method of Proteome-Wide Analysis for Searching Drug Targets in Chemical Proteomics. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1342-1353. [PMID: 36509723 DOI: 10.1134/s000629792211013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein quantitation in tissue cells or physiological fluids based on liquid chromatography/mass spectrometry is one of the key sources of information on the mechanisms of cell functioning during chemotherapeutic treatment. Information on significant changes in protein expression upon treatment can be obtained by chemical proteomics and requires analysis of the cellular proteomes, as well as development of experimental and bioinformatic methods for identification of the drug targets. Low throughput of whole proteome analysis based on liquid chromatography and tandem mass spectrometry is one of the main factors limiting the scale of these studies. The method of direct mass spectrometric identification of proteins, DirectMS1, is one of the approaches developed in recent years allowing ultrafast proteome-wide analyses employing minute-scale gradients for separation of proteolytic mixtures. Aim of this work was evaluation of both possibilities and limitations of the method for identification of drug targets at the level of whole proteome and for revealing cellular processes activated by the treatment. Particularly, the available literature data on chemical proteomics obtained earlier for a large set of onco-pharmaceuticals using multiplex quantitative proteome profiling were analyzed. The results obtained were further compared with the proteome-wide data acquired by the DirectMS1 method using ultrashort separation gradients to evaluate efficiency of the method in identifying known drug targets. Using ovarian cancer cell line A2780 as an example, a whole-proteome comparison of two cell lysis techniques was performed, including the freeze-thaw lysis commonly employed in chemical proteomics and the one based on ultrasonication for cell disruption, which is the widely accepted as a standard in proteomic studies. Also, the proteome-wide profiling was performed using ultrafast DirectMS1 method for A2780 cell line treated with lonidamine, followed by gene ontology analyses to evaluate capabilities of the method in revealing regulation of proteins in the cellular processes associated with drug treatment.
Collapse
Affiliation(s)
- Elizaveta M Solovyeva
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Julia A Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Anna A Lobas
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mark V Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexey A Nazarov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ilya A Shutkov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
5
|
Kasparkova J, Kostrhunova H, Novohradsky V, Ma L, Zhu G, Milaeva ER, Shtill AA, Vinck R, Gasser G, Brabec V, Nazarov AA. Is antitumor Pt(IV) complex containing two axial lonidamine ligands a true dual- or multi-action prodrug? METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6618656. [PMID: 35759404 DOI: 10.1093/mtomcs/mfac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022]
Abstract
This work studied the mechanism of action of a Pt(IV) complex 2 bearing two axial lonidamine ligands, which are selective inhibitors of aerobic glycolysis. The presence of two lonidamine ligands in 2 compared to the parent Pt(II) complex increased its antiproliferative activity, cellular accumulation, and changed its cell cycle profile and mechanism of cell death. In 3D cell culture, 2 showed exceptional antiproliferative activity with IC50 values as low as 1.6 μM in MCF7 cells. The study on the influence of the lonidamine ligands in the Pt complex on glycolysis showed only low potency of ligands to affect metabolic processes in cancer cells, making the investigated complex, not a dual- or multi-action prodrug. However, the Pt(IV) prodrug effectively delivers the cytotoxic Pt(II) complex into cancer cells.
Collapse
Affiliation(s)
- Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Lili Ma
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Elena R Milaeva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Alexender A Shtill
- Blokhin Cancer Center, Russian Academy of Medical Sciences, 115478 Moscow, Russian Federation
| | - Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, 75005 Paris, France
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno CZ-61265, Czech Republic
| | - Alexey A Nazarov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| |
Collapse
|
6
|
Nitulescu GM. Quantitative and Qualitative Analysis of the Anti-Proliferative Potential of the Pyrazole Scaffold in the Design of Anticancer Agents. Molecules 2022; 27:molecules27103300. [PMID: 35630776 PMCID: PMC9146646 DOI: 10.3390/molecules27103300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
The current work presents an objective overview of the impact of one important heterocyclic structure, the pyrazole ring, in the development of anti-proliferative drugs. A set of 1551 pyrazole derivatives were extracted from the National Cancer Institute (NCI) database, together with their growth inhibition effects (GI%) on the NCI’s panel of 60 cancer cell lines. The structures of these derivatives were analyzed based on the compounds’ averages of GI% values across NCI-60 cell lines and the averages of the values for the outlier cells. The distribution and the architecture of the Bemis–Murcko skeletons were analyzed, highlighting the impact of certain scaffold structures on the anti-proliferative effect’s potency and selectivity. The drug-likeness, chemical reactivity and promiscuity risks of the compounds were predicted using AMDETlab. The pyrazole ring proved to be a versatile scaffold for the design of anticancer drugs if properly substituted and if connected with other cyclic structures. The 1,3-diphenyl-pyrazole emerged as a useful scaffold for potent and targeted anticancer candidates.
Collapse
Affiliation(s)
- George Mihai Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
7
|
Pal D, Song IH, Dashrath Warkad S, Song KS, Seong Yeom G, Saha S, Shinde PB, Balasaheb Nimse S. Indazole-based microtubule-targeting agents as potential candidates for anticancer drugs discovery. Bioorg Chem 2022; 122:105735. [PMID: 35298962 DOI: 10.1016/j.bioorg.2022.105735] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Tremendous research is focused on developing novel drug candidates targeting microtubules to inhibit their function in several cellular processes, including cell division. In this regard, several indazole derivatives were sought to target the colchicine binding site on the β-tubulin, a crucial protein required to form microtubules, to develop microtubule targeting agents. Even though there are several reviews on the indazole-based compounds, none of them focused on using indazole scaffold to develop microtubule targeting agents. Therefore, this review aims to present the advances in research on compounds containing indazole scaffolds as microtubule targeting agents based on the articles published in the last two decades. Among the articles reviewed, we found that compounds 6 and 7 showed the lowest IC50 values of 0.6 ∼ 0.9 nM in the cell line studies, making them the strongest indazole derivatives that target microtubules. The compounds 30, 31, 37 (IC50 = ∼ 1 nM) and compounds 8, 38 (IC50 = ∼ 2 nM) have proved to be potent microtubule inhibitors. The compounds 18, 31, 44, 45 also showed strong anticancer activity (IC50 = ∼ 8 nM). It is important to notice that except for compounds 9, 12, 13, 15, and SRF, the top activity compounds including 6, 7, 8, 10, 11, 30, 31, 37, 44, and 45 contain 3,4,5‑trimethoxyphenyl substitution similar to that of colchicine. Therefore, it appears that the 3,4,5‑trimethoxyphenyl substituent on the indazole scaffold is crucial for targeting CBS.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Viswavidyalaya (A Central University), Bilaspur, Chhattisgarh 495009, India
| | - In-Ho Song
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | | | - Keum-Soo Song
- Biometrix Technology, Inc., 2-2 Bio Venture Plaza 56, Chuncheon 24232, South Korea
| | - Gyu Seong Yeom
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea
| | - Supriyo Saha
- Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research, India
| | - Pramod B Shinde
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, South Korea.
| |
Collapse
|