1
|
Garduño-Villavicencio LR, Martínez-Ortega U, Ortiz-Sánchez E, Tinajero-Rodríguez JM, Hernández-Luis F. Compounds Consisting of Quinazoline, Ibuprofen, and Amino Acids with Cytotoxic and Anti-Inflammatory Effects. ChemMedChem 2024; 19:e202300651. [PMID: 38354370 DOI: 10.1002/cmdc.202300651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
In this research work, a series of 16 quinazoline derivatives bearing ibuprofen and an amino acid were designed as inhibitors of epidermal growth factor receptor tyrosine kinase domain (EGFR-TKD) and cyclooxygenase-2 (COX-2) with the intention of presenting dual action in their biological behavior. The designed compounds were synthesized and assessed for cytotoxicity on epithelial cancer cells lines (AGS, A-431, MCF-7, MDA-MB-231) and epithelial non-tumorigenic cell line (HaCaT). From this evaluation, derivative 6 was observed to exhibit higher cytotoxic potency (IC50) than gefitinib (reference drug) on three cancer cell lines (0.034 μM in A-431, 2.67 μM in MCF-7, and 3.64 μM in AGS) without showing activity on the non-tumorigenic cell line (>100 μM). Furthermore, assessment of EGFR-TKD inhibition by 6 showed a discreet difference compared to gefitinib. Additionally, 6 was used to conduct an in vivo anti-inflammatory assay using the 12-O-tetradecanoylphorbol-3-acetate (TPA) method, and it was shown to be 5 times more potent than ibuprofen. Molecular dynamics studies of EGFR-TKD revealed interactions between compound 6 and M793. On the other hand, one significant interaction was observed for COX-2, involving S531. The RMSD graph indicated that the ligand remained stable in 50 ns.
Collapse
Affiliation(s)
- Luis Roberto Garduño-Villavicencio
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U., Coyoacán, CDMx, 04510, Mexico
| | - Ulises Martínez-Ortega
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U., Coyoacán, CDMx, 04510, Mexico
| | - Elizabeth Ortiz-Sánchez
- E. Ortiz-Sánchez, J. M. Tinajero-Rodríguez, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaria de Salud, Av. San Fernando 22, Belisario Domínguez, CDMx, 14080, Mexico
| | - José Manuel Tinajero-Rodríguez
- E. Ortiz-Sánchez, J. M. Tinajero-Rodríguez, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaria de Salud, Av. San Fernando 22, Belisario Domínguez, CDMx, 14080, Mexico
| | - Francisco Hernández-Luis
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.U., Coyoacán, CDMx, 04510, Mexico
| |
Collapse
|
2
|
Feng J, Zheng Y, Ma W, Ihsan A, Hao H, Cheng G, Wang X. Multitarget antibacterial drugs: An effective strategy to combat bacterial resistance. Pharmacol Ther 2023; 252:108550. [PMID: 39492518 DOI: 10.1016/j.pharmthera.2023.108550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The rise of antibiotic resistance and the decrease in the discovery of new antibiotics have caused a global health crisis. Of particular concern is the fact that despite efforts to develop new antibiotics, drug discovery is unable to keep up with the rapid development of resistance. This ongoing crisis highlights the fact that single-target drugs may not always exhibit satisfactory therapeutic effects and are prone to target mutations and resistance due to the complexity of bacterial mechanisms. Retrospective studies have shown that most successful antibiotics have multiple targets. Compared with single-target drugs, successfully designed multitarget drugs can simultaneously regulate multiple targets to reduce resistance caused by single-target mutations or expression changes. In addition to a lower risk of drug-drug interactions, multitarget drugs show superior pharmacokinetics and higher patient compliance compared with combination therapies. Therefore, to reduce resistance, many efforts have been made to discover and design multitarget drugs with different chemical structures and functions. Although there have been numerous studies on how to develop drugs and slow down the development of drug resistance, the reduction of bacterial resistance by multitarget antibacterial drugs has not received widespread attention and is rarely mentioned in the peer-reviewed literature. This review summarises the development of antibiotic resistance and the mechanisms proposed for its emergence, examines the potential of multitarget drugs as an effective strategy to slow the development of resistance, and discusses the rationale for multitarget drug therapy. We also describe multitarget antibacterial compounds with the potential to reduce drug resistance and the available strategies to develop multitarget drugs.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wanqing Ma
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad 45550, Pakistan
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Rodrigues DA. Recent Advances in the Use of Multitarget Therapeutics. Curr Top Med Chem 2022; 22:331-332. [DOI: 10.2174/156802662205220304155829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|