1
|
Laghchioua F, da Silva CFM, Pinto DCGA, Cavaleiro JA, Mendes RF, Paz FAA, Faustino MAF, Rakib EM, Neves MGPMS, Pereira F, Moura NMM. Design of Promising Thiazoloindazole-Based Acetylcholinesterase Inhibitors Guided by Molecular Docking and Experimental Insights. ACS Chem Neurosci 2024; 15:2853-2869. [PMID: 39037949 PMCID: PMC11311138 DOI: 10.1021/acschemneuro.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024] Open
Abstract
Alzheimer's disease is characterized by a progressive deterioration of cognitive function and memory loss, and it is closely associated with the dysregulation of cholinergic neurotransmission. Since acetylcholinesterase (AChE) is a critical enzyme in the nervous system, responsible for breaking down the neurotransmitter acetylcholine, its inhibition holds a significant interest in the treatment of various neurological disorders. Therefore, it is crucial to develop efficient AChE inhibitors capable of increasing acetylcholine levels, ultimately leading to improved cholinergic neurotransmission. The results reported here represent a step forward in the development of novel thiazoloindazole-based compounds that have the potential to serve as effective AChE inhibitors. Molecular docking studies revealed that certain of the evaluated nitroindazole-based compounds outperformed donepezil, a well-known AChE inhibitor used in Alzheimer's disease treatment. Sustained by these findings, two series of compounds were synthesized. One series included a triazole moiety (Tl45a-c), while the other incorporated a carbazole moiety (Tl58a-c). These compounds were isolated in yields ranging from 66 to 87% through nucleophilic substitution and Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reactions. Among the synthesized compounds, the thiazoloindazole-based 6b core derivatives emerged as selective AChE inhibitors, exhibiting remarkable IC50 values of less than 1.0 μM. Notably, derivative Tl45b displays superior performance as an AChE inhibitor, boasting the lowest IC50 (0.071 ± 0.014 μM). Structure-activity relationship (SAR) analysis indicated that derivatives containing the bis(trifluoromethyl)phenyl-triazolyl group demonstrated the most promising activity against AChE, when compared to more rigid substituents such as carbazolyl moiety. The combination of molecular docking and experimental synthesis provides a suitable and promising strategy for the development of new efficient thiazoloindazole-based AChE inhibitors.
Collapse
Affiliation(s)
- Fatima
Ezzahra Laghchioua
- Laboratory
of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences
and Technics, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
| | - Carlos F. M. da Silva
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José A.
S. Cavaleiro
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F. Mendes
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A. Almeida Paz
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - El Mostapha Rakib
- Laboratory
of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences
and Technics, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco
- Higher
School of Technology, Sultan Moulay Slimane
University, BP 336, Fkih Ben Salah, Morocco
| | | | - Florbela Pereira
- LAQV-REQUIMTE,
Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno M. M. Moura
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Wang S, Shi JT, Wang XR, Mu HX, Wang XT, Xu KY, Wang QS, Chen SW. 1H-Indazoles derivatives targeting PI3K/AKT/mTOR pathway: Synthesis, anti-tumor effect and molecular mechanism. Bioorg Chem 2023; 133:106412. [PMID: 36773456 DOI: 10.1016/j.bioorg.2023.106412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
The PI3K/AKT/mTOR signaling pathway is one of the most common abnormal activation pathways in tumor cells, and has associated with multiple functions such as tumor cell growth, proliferation, migration, invasion, and tumor angiogenesis. Here, a series of 3-amino-1H-indazole derivatives were synthesized, and their antiproliferative activities against HT-29, MCF-7, A-549, HepG2 and HGC-27 cells were evaluated. Among them, W24 exhibited the broad-spectrum antiproliferative activity against four cancer cells with IC50 values of 0.43-3.88 μM. Mechanism studies revealed that W24 inhibited proliferation by affecting the DNA synthesis, induced G2/M cell cycle arrest and apoptosis by regulating Cyclin B1, BAD and Bcl-xL, meanwhile induced the change of intracellular ROS and mitochondrial membrane potential in HGC-27 cells. Moreover, W24 inhibited the migration and invasion of HGC-27 cells by decreasing EMT pathway related proteins and reducing the mRNA expression levels of Snail, Slug and HIF-1α. Furthermore, W24 displayed low tissue toxicity profile and good pharmacokinetic properties in vivo. Therefore, 3-amino-1H-indazole derivatives might serve as a new scaffold for the development of PI3K/AKT/mTOR inhibitor and anti-gastric cancer reagent.
Collapse
Affiliation(s)
- Shuai Wang
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Jian-Tao Shi
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xing-Rong Wang
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Hong-Xia Mu
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xue-Ting Wang
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Kai-Yan Xu
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Qing-Shan Wang
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Shi-Wu Chen
- School of Pharmacy & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Burke A, Di Filippo M, Spiccio S, Schito AM, Caviglia D, Brullo C, Baumann M. Antimicrobial Evaluation of New Pyrazoles, Indazoles and Pyrazolines Prepared in Continuous Flow Mode. Int J Mol Sci 2023; 24:5319. [PMID: 36982392 PMCID: PMC10048858 DOI: 10.3390/ijms24065319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Multi-drug resistant bacterial strains (MDR) have become an increasing challenge to our health system, resulting in multiple classical antibiotics being clinically inactive today. As the de-novo development of effective antibiotics is a very costly and time-consuming process, alternative strategies such as the screening of natural and synthetic compound libraries is a simple approach towards finding new lead compounds. We thus report on the antimicrobial evaluation of a small collection of fourteen drug-like compounds featuring indazoles, pyrazoles and pyrazolines as key heterocyclic moieties whose synthesis was achieved in continuous flow mode. It was found that several compounds possessed significant antibacterial potency against clinical and MDR strains of the Staphylococcus and Enterococcus genera, with the lead compound (9) reaching MIC values of 4 µg/mL on those species. In addition, time killing experiments performed on compound 9 on Staphylococcus aureus MDR strains highlight its activity as bacteriostatic. Additional evaluations regarding the physiochemical and pharmacokinetic properties of the most active compounds are reported and showcased, promising drug-likeness, which warrants further explorations of the newly identified antimicrobial lead compound.
Collapse
Affiliation(s)
- Adam Burke
- Science Centre South, School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Mara Di Filippo
- Science Centre South, School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Silvia Spiccio
- Science Centre South, School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
- Section of Medicinal Chemistry, Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy
| | - Chiara Brullo
- Section of Medicinal Chemistry, Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy
| | - Marcus Baumann
- Science Centre South, School of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
4
|
Substitution Effects on the Mechanism of Light-Induced 2,5-Diaryltetrazole-Naphthoquinone 1,3-Dipolar Cycloaddition: A Theoretical Study. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|