1
|
Li R, Pan Y, Jing N, Wang T, Shi Y, Hao L, Zhu J, Lu J. Flavonoids from mulberry leaves exhibit sleep-improving effects via regulating GABA and 5-HT receptors. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118734. [PMID: 39374877 DOI: 10.1016/j.jep.2024.118734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mulberry leaf (Folium Mori) is a dried leaf of the dicotyledonous mulberry tree and is a homologous food and medicine. Treating insomnia with it is a common practice in traditional Chinese medicine. But still, its potential sleep-improving mechanism remains to be elucidated. AIM OF REVIEW Potential bioactive components and mechanisms of the sleep-improving effect of purified flavone from mulberry leaves (MLF) were explored through in vivo experiments, network pharmacology analysis, and molecular experimental validation. MATERIALS AND METHODS The mice model was established by pentobarbital sodium induction to evaluate the sleep-improving effect of MLF. The MLF's chemical composition was identified through a liquid chromatograph quadrupole time-of-flight mass spectrometer (Q-TOF LC/MS) to elucidate its sleep-improving active ingredient. At last, the underlying mechanism of MLF's sleep-improving effect was elucidated through neurotransmitter detection (ELISA), network pharmacology analysis, and molecular experimental validation (quantitative real-time PCR and western blotting). RESULTS MLF could dramatically reduce sleep latency by 35%, prolong sleep duration by 123%, and increase the sleep rate of mice through increasing γ-aminobutyric acid (GABA) and serotonin (5-HT) release in serum, hypothalamus, and hippocampus. Q-TOF LC/MS identified 17 flavonoid components in MLF. Network pharmacological analysis suggested that the key sleep-improving active ingredients in MLF might be quercetin, kaempferol, morin, and delphinidin. The key path for MLF to improve sleep might be the tryptophan metabolism and neuroactive ligand-receptor interaction, and the key targets might be gamma-aminobutyric acid type A receptor subunit alpha2 Gene (GABRA2) and serotonin 1A (5-HT1A) receptors. CONCLUSIONS MLF has shown significant sleep-improving effects in mice and may take effect through regulating the GABA and 5-HT receptors.
Collapse
Affiliation(s)
- Rui Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Yongkang Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Nannan Jing
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, 100010, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, Henan, 462300, China.
| |
Collapse
|
2
|
Kong X, Zhou X, Li R, Kang Q, Hao L, Zhu J, Lu J. Sleep-improving effect and the potential mechanism of Morus alba L. on mice. Fitoterapia 2024; 179:106205. [PMID: 39255910 DOI: 10.1016/j.fitote.2024.106205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
As insufficient sleep has become a widespread concern in modern society, potential sleep-improving effect of mulberry (Morus alba L.) leaf ethanol extract (MLE) and the related mechanism were investigated in the present study. According to the results, MLE could significantly shorten sleep latency by 33 %, extend sleep duration by 56 % and increase sleep ratio of mice through increasing 5-HT and GABA release in serum, hypothalamus and hippocampus. Metabonomic analysis showed that phenylalanine metabolism, arginine and proline metabolism might be the potential pathways of MLE to improve sleep. Network pharmacological and LC-MS analysis suggested that the key sleep-improving active ingredients in MLE might be luteolin, kaempferol, naringenin, morin, stigmasterol and β-sitosterol. Further molecular docking and qRT-PCR results demonstrated that the key targets for MLE to improve sleep might be MAOA, GABRA1 and GABRA2. In conclusion, MLE showed outstanding sleep-improving effect and great potential for the application as novel sleep-improving functional food.
Collapse
Affiliation(s)
- Xiaoran Kong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaolu Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Rui Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, 100010, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
3
|
Liu H, Feng X, Zhang R, Yuan S, Tian Y, Luo P, Chen J, Zhou X. Safety of medicinal and edible herbs from fruit sources for human consumption: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118429. [PMID: 38851470 DOI: 10.1016/j.jep.2024.118429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal and edible herbs from fruit sources have been increasingly used in traditional Chinese medicine dietotherapy. There are no restrictions on who could consume the medicinal and edible fruits or on the dosage of consumption. However, their safety for human consumption has yet to be established. AIM OF THE STUDY This systematic review aimed to assess the safety of human consumption of 30 medicinal and edible fruits. MATERIALS AND METHODS Seven English and Chinese databases were searched up to May 31, 2023, to collect AE reports following human consumption of medicinal and edible fruits. Eligible reports should include details on the occurrence, symptoms, treatments, and outcomes of AEs. AEs that were life-threatening or caused death, permanent or severe disability/functional loss, or congenital abnormality/birth defects were classified as serious AEs (SAEs). The causality between the consumption of fruits and AEs was graded as one of four ranks: "certain", "probable", "possible", or "unlikely". RESULTS Thirty AE reports related to the consumption of medicinal and edible fruits were included, involving 12 species of fruits: Crataegi fructus, Gardeniae fructus, Mori fructus, Hippophae fructus, Cannabis fructus, Siraitiae fructus, Perillae fructus, Rubi fructus, Longan arillus, Anisi stellati fructus, Zanthoxyli pericarpium, and Lycii fructus. No AE reports were found for the remaining 18 species. A total of 97 AEs, featuring predominantly gastrointestinal symptoms, followed by allergic reactions and neuropsychiatric symptoms, were recorded. Thirty SAEs were noted, with Zanthoxyli pericarpium accounting for the most (14 cases), followed by Perillae fructus (7 cases), Anisi stellati fructus (6 cases), and Gardeniae fructus, Rubi fructus, and Mori fructus (1 case each). Mori fructus was associated with one death. All AEs were concordant with a causality to fruit consumption, judged to be "certain" for 37 cases, "probable" for 53 cases, and "possible" for 7 cases. CONCLUSIONS Our findings suggest that among medicinal and edible fruits, 12 species have AE reports with a causality ranging from "possible" to "definite". SAEs were not scarce. Most AEs may be associated with an excessive dose, prolonged consumption, or usage among infants or young children. No AE reports were found for the remaining 18 species.
Collapse
Affiliation(s)
- Huilin Liu
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xianjie Feng
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Rui Zhang
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shuai Yuan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yaqi Tian
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ping Luo
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jianrong Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Xu Zhou
- Evidence-based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China; Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Chengdu, China.
| |
Collapse
|
4
|
Polyiam P, Thukhammee W. A Comparison of Phenolic, Flavonoid, and Amino Acid Compositions and In Vitro Antioxidant and Neuroprotective Activities in Thai Plant Protein Extracts. Molecules 2024; 29:2990. [PMID: 38998943 PMCID: PMC11243576 DOI: 10.3390/molecules29132990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024] Open
Abstract
The leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean are considered rich sources of plant protein with high levels of branched-chain amino acids. Furthermore, they contain beneficial phytochemicals such as antioxidants and anti-inflammatory agents. Additionally, there are reports suggesting that an adequate consumption of amino acids can reduce nerve cell damage, delay the onset of memory impairment, and improve sleep quality. In this study, protein isolates were prepared from the leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean. The amino acid profile, dietary fiber content, phenolic content, and flavonoid content were evaluated. Pharmacological properties, such as antioxidant, anticholinesterase, monoamine oxidase, and γ-aminobutyric acid transaminase (GABA-T) activities, were also assessed. This study found that concentrated protein from mung beans has a higher quantity of essential amino acids (52,161 mg/100 g protein) compared to concentrated protein from sunflower sprouts (47,386 mg/100 g protein), Azolla spp. (42,097 mg/100 g protein), cashew nut (26,710 mg/100 g protein), and mulberry leaves (8931 mg/100 g protein). The dietary fiber content ranged from 0.90% to 3.24%, while the phenolic content and flavonoid content ranged from 0.25 to 2.29 mg/g and 0.01 to 2.01 mg/g of sample, respectively. Sunflower sprout protein isolates exhibited the highest levels of dietary fiber (3.24%), phenolic content (2.292 ± 0.082 mg of GAE/g), and flavonoids (2.014 mg quercetin/g of sample). The biological efficacy evaluation found that concentrated protein extract from sunflower sprouts has the highest antioxidant activity; the percentages of inhibition of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical were 20.503 ± 0.288% and 18.496 ± 0.105%, respectively. Five plant-based proteins exhibited a potent inhibition of acetylcholinesterase (AChE) enzyme activity, monoamine oxidase (MAO) inhibition, and GABA-T ranging from 3.42% to 24.62%, 6.14% to 20.16%, and 2.03% to 21.99%, respectively. These findings suggest that these plant protein extracts can be used as natural resources for developing food supplements with neuroprotective activity.
Collapse
Affiliation(s)
- Pontapan Polyiam
- Department of Physiology, Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Human High Performance and Health Promotion (HHP&HP) Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukhammee
- Human High Performance and Health Promotion (HHP&HP) Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
5
|
Chang YC, Yu MH, Huang HP, Chen DH, Yang MY, Wang CJ. Mulberry leaf extract inhibits obesity and protects against diethylnitrosamine-induced hepatocellular carcinoma in rats. J Tradit Complement Med 2024; 14:266-275. [PMID: 38707917 PMCID: PMC11068992 DOI: 10.1016/j.jtcme.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 05/07/2024] Open
Abstract
Mulberry leaf has been recognized as a traditional Chinese medicinal plant, which was distributed throughout the Asia. The aqueous extract of mulberry leaf extract (MLE) has various biologically active components such as polyphenols and flavonoids. However, the inhibitory effect of MLE in hepatocarcinogenesis is poorly understood. In this study, we determined the role of MLE supplementation in preventing hepatocarcinogenesis in a carcinogen-initiated high-fat diet (HFD)-promoted Sprague-Dawley (SD) rat model. The rats were fed an HFD to induce obesity and spontaneous hepatomas by administering 0.01% diethylnitrosamine (DEN) in their drinking water for 12 weeks (HD group), and also to fed MLE through oral ingestion at daily doses of 0.5%, 1%, or 2%. At the end of the 12-week experimental period, the liver tumors were analyzed to identify markers of oxidative stress and antioxidant enzyme activities, and their serum was analyzed to determine their nutritional status and liver function. Histopathological analysis revealed that MLE supplementation significantly suppressed the severity and incidence of hepatic tumors. Furthermore, compared with the HFD + DEN groups, the expression of protein kinase C (PKC)-α and Rac family small GTPase 1 (Rac1) was lower in the MLE groups. These findings suggest that MLE prevents obesity-enhanced, carcinogen-induced hepatocellular carcinoma development, potentially through the protein kinase C (PKC)α/Rac1 signaling pathway. MLE might be an effective chemoprevention modality for nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH)-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yun-Ching Chang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Meng-Hsun Yu
- Department of Nutrition, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Hui-Pei Huang
- Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Dong-Hui Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Mon-Yuan Yang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| |
Collapse
|
6
|
Zhang X, Geng A, Cao D, Dugarjaviin M. Identification of mulberry leaf flavonoids and evaluating their protective effects on H 2O 2-induced oxidative damage in equine skeletal muscle satellite cells. Front Mol Biosci 2024; 11:1353387. [PMID: 38650596 PMCID: PMC11033687 DOI: 10.3389/fmolb.2024.1353387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction: Horses are susceptible to oxidative stress during strenuous endurance exercise, leading to muscle fatigue and damage. Mulberry leaf flavonoids (MLFs) possess significant antioxidant properties. However, the antioxidant efficacy of MLFs can be influenced by the extraction process, and their impact on H2O2-induced oxidative stress in equine skeletal muscle satellite cells (ESMCs) remains unexplored. Methods: Our study employed three extraction methods to obtain MLFs: ultrasound-assisted extraction (CEP), purification with AB-8 macroporous resin (RP), and n-butanol extraction (NB-EP). We assessed the protective effects of these MLFs on H2O2-induced oxidative stress in ESMCs and analyzed the MLF components using metabolomics. Results: The results revealed that pre-treatment with MLFs dose-dependently protected ESMCs against H2O2-induced oxidative stress. The most effective concentrations were 0.8 mg/mL of CEP, 0.6 mg/mL of RP, and 0.6 mg/mL of NB-EP, significantly enhancing EMSC viability (p < 0.05). These optimized MLF concentrations promoted the GSH-Px, SOD and T-AOC activities (p < 0.05), while reducing MDA production (p < 0.05) in H2O2-induced ESMCs. Furthermore, these MLFs enhanced the gene expression, including Nrf2 and its downstream regulatory genes (TrxR1, GPX1, GPX3, SOD1, and SOD2) (p < 0.05). In terms of mitochondrial function, ESMCs pre-treated with MLFs exhibited higher basal respiration, spare respiratory capacity, maximal respiration, ATP-linked respiration compared to H2O2-induced ESMCs (p < 0.05). Additionally, MLFs enhanced cellular basal glycolysis, glycolytic reserve, and maximal glycolytic capacity (p < 0.05). Metabolomics analysis results revealed significant differences in mulberrin, kaempferol 3-O-glucoside [X-Mal], neohesperidin, dihydrokaempferol, and isobavachalcone among the three extraction processes (p < 0.05). Discussion: Our study revealed that MLFs enhance antioxidant enzyme activity, alleviate oxidative damage in ESMCs through the activation of the Nrf2 pathway, and improve mitochondrial respiration and cell energy metabolism. Additionally, we identified five potential antioxidant flavonoid compounds, suggesting their potential incorporation into the equine diet as a strategy to alleviate exercise-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Manglai Dugarjaviin
- lnner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, College of Animal Science and Technology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
7
|
Yuan T, Qazi IH, Yang P, Zhang X, Li J, Liu J. Analysis of endophytic bacterial flora of mulberry cultivars susceptible and resistant to bacterial wilt using metagenomic sequencing and culture-dependent approach. World J Microbiol Biotechnol 2023; 39:163. [PMID: 37067654 DOI: 10.1007/s11274-023-03599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Endophytes have a wide range of potential in maintaining plant health and sustainable agricultural environmental conditions. In this study, we analysed the diversity of endophytic bacteria in four mulberry cultivars with different resistance capacity against bacterial wilt using metagenomic sequencing and culture-dependent approaches. We further assessed the role of 11 shared genera in the control of bacterial wilt of mulberry. The results of the present study showed that Actinobacteria, Firmicutes, and Proteobacteria were the three dominant phyla in all communities, with the representative genera Acinetobacter and Pseudomonas. The diversity analysis showed that the communities of the highly and moderately resistant varieties were more diverse compared to those of the weakly resistant and susceptible varieties. The control tests of mulberry bacterial wilt showed that Pantoea, Atlantibacter, Stenotrophomonas, and Acinetobacter were effective, with a control rate of over 80%. Microbacterium and Kosakonia were moderately effective, with a control rate between 50 and 80%. At the same time, Escherichia, Lysinibacillus, Pseudomonas, and Rhizobium were found to be less effective, with a control rate of less than 40%. In conclusion, this study provides a reasonable experimental reference data for the control of bacterial wilt of mulberry.
Collapse
Affiliation(s)
- Ting Yuan
- College of Animal Science, Regional Sericulture Training Center For Asia-Pacific, South China Agriculture University, Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Izhar Hyder Qazi
- College of Animal Science, Regional Sericulture Training Center For Asia-Pacific, South China Agriculture University, Wushan Road, Guangzhou, 510642, Guangdong, China
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, 67210, Pakistan
| | - Peijia Yang
- College of Animal Science, Regional Sericulture Training Center For Asia-Pacific, South China Agriculture University, Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Xueyin Zhang
- College of Animal Science, Regional Sericulture Training Center For Asia-Pacific, South China Agriculture University, Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Jinhao Li
- College of Animal Science, Regional Sericulture Training Center For Asia-Pacific, South China Agriculture University, Wushan Road, Guangzhou, 510642, Guangdong, China
| | - Jiping Liu
- College of Animal Science, Regional Sericulture Training Center For Asia-Pacific, South China Agriculture University, Wushan Road, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
8
|
Liu Y, Zhou X, Zhou D, Jian Y, Jia J, Ge F. Isolation of Chalcomoracin as a Potential α-Glycosidase Inhibitor from Mulberry Leaves and Its Binding Mechanism. Molecules 2022; 27:molecules27185742. [PMID: 36144478 PMCID: PMC9504037 DOI: 10.3390/molecules27185742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetes is a chronic metabolic disease, whereas α-glucosidases are key enzymes involved in the metabolism of starch and glycogen. There is a long history of the use of mulberry leaf (the leaf of Morus alba) as an antidiabetic herb in China, and we found that chalcomoracin, one of the specific Diels–Alder adducts in mulberry leaf, had prominent α-glucosidase inhibitory activity and has the potential to be a substitute for current hypoglycemic drugs such as acarbose, which have severe gastrointestinal side effects. In this study, chalcomoracin was effectively isolated from mulberry leaves, and its α-glucosidase inhibition was studied via enzymatic kinetics, isothermal titration (ITC) and molecular docking. The results showed that chalcomoracin inhibited α-glucosidase through both competitive and non-competitive manners, and its inhibitory activity was stronger than that of 1-doxymycin (1-DNJ) but slightly weaker than that of acarbose. ITC analysis revealed that the combination of chalcomoracin and α-glucosidase was an entropy-driven spontaneous reaction, and the molecular docking results also verified this conclusion. During the binding process, chalcomoracin went into the “pocket” of α-glucosidase via hydrophobic interactions, and it is linked with residues Val544, Asp95, Ala93, Gly119, Arg275 and Pro287 by hydrogen bonds. This study provided a potential compound for the prevention and treatment of diabetes and a theoretical basis for the discovery of novel candidates for α-glycosidase inhibitors.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongxing Jian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfu Jia
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515000, China
- Correspondence: (J.J.); (F.G.)
| | - Fahuan Ge
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Correspondence: (J.J.); (F.G.)
| |
Collapse
|
9
|
Anti-Inflammatory and Anti-Bacterial Potential of Mulberry Leaf Extract on Oral Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19094984. [PMID: 35564380 PMCID: PMC9099889 DOI: 10.3390/ijerph19094984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023]
Abstract
Mulberry leaves extract (Morus alba extracts; MAE) is known to have therapeutic potentials for numerous human diseases, including diabetes, neurological disorders, cardiovascular diseases, and cancers. However, there has not been sufficient research proving therapeutic effects on oral disease and its related oral risk factors. Thus, we investigated whether MAE has any anti-inflammatory and anti-bacterial effects on risk factors causing oral infectious diseases. To examine the anti-inflammatory response and bacterial inhibition of MAE, we measured intracellular reactive oxygen species (ROS) generation, production of pro-inflammatory cytokines, and the bacterial growth rate. Our study showed that MAE has anti-inflammatory activities, which inhibit the ROS generation and suppressed the production of pro-inflammatory cytokines (TNF-α and IL-6) in human monocyte THP-1 cells by stimulating lipopolysaccharide (LPS) and/or F. nucleatum, which are the virulent factors in periodontal diseases. Furthermore, MAE inhibited the bacterial growth on oral microorganisms (F. nucleatum and S. mutans) infected THP-1 cells. These findings suggested that MAE could be a potential natural source for therapeutic drugs in oral infectious disease.
Collapse
|
10
|
Muhammad F, Liu Y, Zhou Y, Yang H, Li H. Antioxidative role of Traditional Chinese Medicine in Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114821. [PMID: 34838943 DOI: 10.1016/j.jep.2021.114821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neuroprotective Traditional Chinese Medicine (TCM) has been practiced in alternative medicine from early days. TCM-derived neuroprotective compounds, such as Chrysin, Cannabidiol, Toonasinoids, and β-asaron, exert significant effectiveness's towards Parkinson's disease (PD). Further, these neuroprotective TCM showed antioxidative, anti-inflammatory, anti-tumor, anti-septic, analgesic properties. Recent research showed that the reduction in the reactive oxygen species (ROS) decreased the α-synuclein (α-syn) toxicity and enhanced the dopaminergic neuron regenerations, the main hallmarks of PD. Therefore, the neuroprotective effects of novel TCM due to its antiradical activities needed deep investigations. AIMS OF THE STUDY This review aims to enlighten the neuroprotective TCM and its components with their antioxidative properties to the scientific community for future research. METHOD The relevant information on the neuroprotective TCM was gathered from scientific databases (PubMed, Web of Science, Google Scholar, ScienceDirect, SciFinder, Wiley Online Library, ACS Publications, and CNKI). Information was also gained from MS and Ph.D. thesis, books, and online databases. The literature cited in this review dates from 2001 to June 2, 0201. RESULTS Novel therapies for PD are accessible, mostly rely on Rivastigmine and Donepezil, offers to slow down the progression of disease at an early stage but embraces lots of disadvantages. Researchers are trying to find a potential drug against PD, which is proficient at preventing or curing the disease progress, but still needed to be further identified. Oxidative insult and mitochondrial dysfunction are thought to be the main culprit of neurodegenerations. Reactive oxygen species (ROS) are the only causative agent in all interactions, leading to PD, from mitochondrial dysfunctions, α-syn aggregative toxicity, and DA neurons degenerations. It is evident from the redox balance, which seems an imperative therapeutic approach against PD and was necessary for the significant neuronal activities. CONCLUSION Our study is explaining the newly discovered TCM and their neuroprotective and antioxidative properties. But also bring up the possible treatment approaches against PD for future researchers.
Collapse
Affiliation(s)
- Fahim Muhammad
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yan Liu
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China
| | - Hui Yang
- Instiute of Biology Gansu Academy of Sciences, China.
| | - Hongyu Li
- College of Life Sciences, Lanzhou University, Lanzhou, China; School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, China.
| |
Collapse
|
11
|
Cao Y, Jiang W, Bai H, Li J, Zhu H, Xu L, Li Y, Li K, Tang H, Duan W, Wang S. Study on active components of mulberry leaf for the prevention and treatment of cardiovascular complications of diabetes. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|