1
|
Yadav G, Megha, Yadav S, Tomar R. An overview: total synthesis of arborisidine, and arbornamine. Mol Divers 2024:10.1007/s11030-024-10978-7. [PMID: 39242485 DOI: 10.1007/s11030-024-10978-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Arborisidine and Arbornamine are two monoterpenoid indole alkaloids that were isolated from the Malayan Kopsia arborea plant. This review provides valuable information about the total and formal syntheses of these alkaloids. The synthesis strategies discussed in this review, such as Pictet-Spengler cyclization, chemo- and stereoselective oxidative cyclization, Michael/Mannich cascade process, and intramolecular N-alkylation, can be useful for developing new methods to synthesize these and other similar compounds.
Collapse
Affiliation(s)
- Gitanjali Yadav
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari, Haryana, 122502, India
- Department of Chemistry, Baba Mastnath University Asthal bohar, Rohtak, Haryana, 124021, India
| | - Megha
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari, Haryana, 122502, India
| | - Sangeeta Yadav
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka, Delhi, 110078, India
| | - Ravi Tomar
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, 201204, India.
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India.
| |
Collapse
|
2
|
Sharma P, Kumari P, Sharma M, Sharma R, Paliwal A, Srivastava S, Ashique S, Bhowmick M, Adnan M, Mir RH. Therapeutic potential of Aloe vera-coated curcumin encapsulated nanoparticles in an Alzheimer-induced mice model: behavioural, biochemical and histopathological evidence. J Microencapsul 2024; 41:403-418. [PMID: 39007845 DOI: 10.1080/02652048.2024.2373715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE The main purpose of the present study was to evaluate the therapeutic efficacy of Aloe vera-coated curcumin encapsulated nanoparticles in mitigating Alzheimer's disease progression in mice, by examining behavioural changes, biochemical markers, and histopathological alterations, thus elucidating its potential as a treatment strategy. METHODS The green synthesis method was used to synthesise this nanoformulation, which was then characterised using a variety of techniques, including percentage encapsulation efficacy, UV-visible spectroscopy, DLS, FT-IR, FESEM, and EDX. Several in-vivo assessments, including behavioural evaluations, dose optimisation studies, oxidative stress marker estimation, and histological studies, were conducted to determine the potential therapeutic impact of nanoformulation on the Alzheimer-induced mice model. RESULTS The synthesised nanoparticles show a mean diameter of 76.12 nm ±1.23, a PDI of 0.313 ± 0.02, a zeta potential of 6.27 ± 0.65 mV, and the percentage encapsulation efficiency between 90% and 95% indicating good stability of synthesised nanoformulation. With the help of Morris water maze, Y-maze, and novel object recognition assay, the learning capacity and memory were assessed, and the results show that the synthesised nanoformulation significantly decreased the transfer latency to reach baited arm or to the hidden platform within 7 days. CONCLUSION The formulation demonstrated significant biochemical benefits and remarkable cognitive advantages, establishing it as a prospective therapeutic intervention option that is both safe and effective.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Pooja Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Mansi Sharma
- Department of Chemistry, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Rekha Sharma
- Department of Chemistry, Banasthali Vidyapith, Jaipur, Rajasthan, India
| | - Ajita Paliwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
| | - Mithun Bhowmick
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences and Research, Durgapur, West Bengal, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Reyaz Hassan Mir
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
3
|
Sarkar B, Rana N, Singh C, Singh A. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5483-5511. [PMID: 38472370 DOI: 10.1007/s00210-024-03027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients' new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.
Collapse
Affiliation(s)
- Biplob Sarkar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Srinagar, 249161, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
4
|
Hussain MS, Chaturvedi V, Goyal S, Singh S, Mir RH. An Update on the Application of Nano Phytomedicine as an Emerging
Therapeutic Tool for Neurodegenerative Diseases. CURRENT BIOACTIVE COMPOUNDS 2024; 20. [DOI: 10.2174/0115734072258656231013085318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2024]
Abstract
Abstract:
The existence of the blood-brain barrier (BBB), a densely woven network of blood
vessels and endothelial cells designed to prevent the infiltration of foreign substances into the
brain, the methods employed in developing treatments for neurodegenerative disorders (NDs)
such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Multiple sclerosis, Amyotrophic lateral sclerosis, and others, pose significant challenges and complexities. These illnesses
have had a terrible impact on the human population's health. Because early detection of these
problems is poor and no good therapy has been established, they have emerged as the biggest lifethreatening healthcare burden worldwide compared to other significant illnesses. Traditional drug
delivery techniques do not offer efficient treatment for NDs due to constraints in the BBB design,
efflux pumps, and metabolic enzyme expression. Nanotechnology has the potential to significantly enhance ND therapy by utilizing systems that have been bioengineered to engage with living
organisms at the cellular range. Compared to traditional techniques, nanotechnological technologies have several potential ways for crossing the BBB and increasing therapeutic efficacy in the
brain. The introduction and growth of nanotechnology indicate promising potential for overcoming this issue. Engineered nanoparticles coupled with therapeutic moieties and imaging agents
with dimensions ranging from 1-100 nm can improve effectiveness, cellular uptake, selective
transport, and drug delivery to the brain due to their changed physicochemical properties. Conjugates of nanoparticles and medicinal plants, or their constituents known as nano phytomedicine,
have recently gained importance in developing cutting-edge neuro-therapeutics due to their abundant natural supply, promising targeted delivery to the brain, and lower potential for adverse effects. This study summarizes the common NDs, their prevalence and pathogenesis, and potential
herbal nanoformulation for treating NDs.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Varunesh Chaturvedi
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Saloni Goyal
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Sandeep Singh
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Reyaz Hassan Mir
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and
Kashmir, 190006, India
| |
Collapse
|
5
|
Socała K, Żmudzka E, Lustyk K, Zagaja M, Brighenti V, Costa AM, Andres-Mach M, Pytka K, Martinelli I, Mandrioli J, Pellati F, Biagini G, Wlaź P. Therapeutic potential of stilbenes in neuropsychiatric and neurological disorders: A comprehensive review of preclinical and clinical evidence. Phytother Res 2024; 38:1400-1461. [PMID: 38232725 DOI: 10.1002/ptr.8101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Neuropsychiatric disorders are anticipated to be a leading health concern in the near future, emphasizing an outstanding need for the development of new effective therapeutics to treat them. Stilbenes, with resveratrol attracting the most attention, are an example of multi-target compounds with promising therapeutic potential for a broad array of neuropsychiatric and neurological conditions. This review is a comprehensive summary of the current state of research on stilbenes in several neuropsychiatric and neurological disorders such as depression, anxiety, schizophrenia, autism spectrum disorders, epilepsy, traumatic brain injury, and neurodegenerative disorders. We describe and discuss the results of both in vitro and in vivo studies. The majority of studies concentrate on resveratrol, with limited findings exploring other stilbenes such as pterostilbene, piceatannol, polydatin, tetrahydroxystilbene glucoside, or synthetic resveratrol derivatives. Overall, although extensive preclinical studies show the potential benefits of stilbenes in various central nervous system disorders, clinical evidence on their therapeutic efficacy is largely missing.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
6
|
Jayanti S, Vitek L, Verde CD, Llido JP, Sukowati C, Tiribelli C, Gazzin S. Role of Natural Compounds Modulating Heme Catabolic Pathway in Gut, Liver, Cardiovascular, and Brain Diseases. Biomolecules 2024; 14:63. [PMID: 38254662 PMCID: PMC10813662 DOI: 10.3390/biom14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The crucial physiological process of heme breakdown yields biliverdin (BV) and bilirubin (BR) as byproducts. BV, BR, and the enzymes involved in their production (the "yellow players-YP") are increasingly documented as endogenous modulators of human health. Mildly elevated serum bilirubin concentration has been correlated with a reduced risk of multiple chronic pro-oxidant and pro-inflammatory diseases, especially in the elderly. BR and BV per se have been demonstrated to protect against neurodegenerative diseases, in which heme oxygenase (HMOX), the main enzyme in the production of pigments, is almost always altered. HMOX upregulation has been interpreted as a tentative defense against the ongoing pathologic mechanisms. With the demonstration that multiple cells possess YP, their propensity to be modulated, and their broad spectrum of activity on multiple signaling pathways, the YP have assumed the role of an adjustable system that can promote health in adults. Based on that, there is an ongoing effort to induce their activity as a therapeutic option, and natural compounds are an attractive alternative to the goal, possibly requiring only minimal changes in the life style. We review the most recent evidence of the potential of natural compounds in targeting the YP in the context of the most common pathologic condition of adult and elderly life.
Collapse
Affiliation(s)
- Sri Jayanti
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, and 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 12000 Prague, Czech Republic;
| | - Camilla Dalla Verde
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - John Paul Llido
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
| | - Caecilia Sukowati
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Claudio Tiribelli
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| | - Silvia Gazzin
- Liver brain Unit “Rita Moretti”, Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163,5, Basovizza, 34149 Trieste, Italy or (S.J.); (C.D.V.); (J.P.L.); or (C.S.); (C.T.)
| |
Collapse
|
7
|
Singh S, Chib S, Akhtar MJ, Kumar B, Chawla PA, Bhatia R. Paradigms and Success Stories of Natural Products in Drug Discovery Against Neurodegenerative Disorders (NDDs). Curr Neuropharmacol 2024; 22:992-1015. [PMID: 36606589 PMCID: PMC10964107 DOI: 10.2174/1570159x21666230105110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neurodegenerative disorders (NDDs) are multifaceted complex disorders that have put a great health and economic burden around the globe nowadays. The multi-factorial nature of NDDs has presented a great challenge in drug discovery and continuous efforts are in progress in search of suitable therapeutic candidates. Nature has a great wealth of active principles in its lap that has cured the human population since ancient times. Natural products have revealed several benefits over conventional synthetic medications and scientists have shifted their vision towards exploring the therapeutic potentials of natural products in the past few years. The structural mimicking of natural compounds to endogenous ligands has presented them as a potential therapeutic candidate to prevent the development of NDDs. In the presented review, authors have summarized demographical facts about various NDDs including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and various types of sclerosis in the brain. The significant findings of new active principles of natural origin along with their therapeutic potentials on NDDs have been included. Also, a description of clinical trials and patents on natural products has been enlisted in this compilation. Although natural products have shown promising success in drug discovery against NDDs, still their use is associated with several ethical issues which need to be solved in the upcoming time.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Shivani Chib
- Department of Pharmacology, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Md. Jawaid Akhtar
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO620, PC 130 Azaiba, Bousher, Muscat, Oman
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, Garhwal, Uttarakhand, 246174, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, 142001, India
| |
Collapse
|
8
|
Khan SU, Hamza B, Mir RH, Fatima K, Malik F. Lavender Plant: Farming and Health Benefits. Curr Mol Med 2024; 24:702-711. [PMID: 37202896 DOI: 10.2174/1566524023666230518114027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 05/20/2023]
Abstract
Natural remedies from a range of sources, including plants, animals, microorganisms, and marine life, have made a significant contribution to the treatment of many ailments. Lavender is a Mediterranean shrub from the Lamiaceae family. Lavender flowers (Lavandula flores) include active ingredients (3%), anthocyanins, sugars, phytosterols, minerals, and tannins and are majorly used for herbal applications. Lavender essential oil's descriptive and analytical composition varies depending on genotype, growing region, climatic circumstances, propagation, and morphological characteristics. There are around 300 chemical components in essential oil. Linalool, terpinen-4-ol, linalyl acetate, ocimene, acetate lavandulol, and cineole are the most prominent constituents. Lavender oil has antibacterial and antioxidant properties. The lavender extract helps to prevent dementia and may slow cancer cell growth, while lavender oil is used to treat skin problems. This review will cover the recent medical, economic and regional advancements in levander propagation and how the Council of Scientific & Industrial Research Indian Institute of Integrative (CSIR IIIM) aroma mission is actively acting as a bridge between farmers and their economic improvement by attracting them to the field of medicinal plant cultivation.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar Srinagar, 190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Baseerat Hamza
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar Srinagar, 190005, Jammu and Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Jammu and Kashmir, India
| | - Kaneez Fatima
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar Srinagar, 190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Fayaz Malik
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar Srinagar, 190005, Jammu and Kashmir, India
| |
Collapse
|
9
|
Paul ZA, Malla AT, Dar MA, Masoodi MH. Phytochemistry and Pharmacological Activity of Malva sylvestris L: A Detailed Insight. Comb Chem High Throughput Screen 2024; 27:2309-2322. [PMID: 37855358 DOI: 10.2174/0113862073269336231009110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023]
Abstract
Malva sylvestris L., is commonly referred to as Mallow and is found in Europe, Asia and Africa. This has been traditionally used for inflammation, gastrointestinal disturbances, skin disorders, menstrual pains, and urological disorders. This review covers phytoconstituents and Pharmacological activities of M. sylvestris. The plant contains a large number of phytochemical constituents having diverse pharmacological activities. The plant contains many phenolic compounds responsible for its strong antioxidant activity. Coumarins from Mallow have a potential anticancer activity. Malva sylvestris also contains essential as well as non-essential elements and minerals. Many researchers have provided evidence that Malva sylvestris is a good candidate for use as a medicinal herb and has good nutritional value. The leaves, in particular, offer properties like anticancer, skin whitening, and anti-aging. Furthermore, the aqueous extract was recently shown to have an anti-ulcerogenic effect. Malva sylvestris has a high potential for use in cosmetics such as skin whitening and anti-aging treatments. Methanolic extracts of Malva sylvestris leaves, and flowers showed strong antibacterial activity against a common plant pathogen bacterium. The plant also contains Malvone A, which is responsible for antibacterial action. The plant also possesses anti-inflammatory, analgesic, wound healing properties and various other activities.
Collapse
Affiliation(s)
- Zahid Ahmad Paul
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Aamir Tariq Malla
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Mohammad Akbar Dar
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| |
Collapse
|
10
|
Kumar R, Madhavan T, Ponnusamy K, Sohn H, Haider S. Computational study of the motor neuron protein KIF5A to identify nsSNPs, bioactive compounds, and its key regulators. Front Genet 2023; 14:1282234. [PMID: 38028604 PMCID: PMC10667939 DOI: 10.3389/fgene.2023.1282234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Kinesin family member 5A (KIF5A) is a motor neuron protein expressed in neurons and involved in anterograde transportation of organelles, proteins, and RNA. Variations in the KIF5A gene that interfere with axonal transport have emerged as a distinguishing feature in several neurodegenerative disorders, including hereditary spastic paraplegia (HSP10), Charcot-Marie-Tooth disease type 2 (CMT2), and Amyotrophic Lateral Sclerosis (ALS). Methods: In this study, we implemented a computational structural and systems biology approach to uncover the role of KIF5A in ALS. Using the computational structural biology method, we explored the role of non-synonymous Single Nucleotide Polymorphism (nsSNPs) in KIF5A. Further, to identify the potential inhibitory molecule against the highly destabilizing structure variant, we docked 24 plant-derived phytochemicals involved in ALS. Results: We found KIF5AS291F variant showed the most structure destabilizing behavior and the phytocompound "epigallocatechin gallate" showed the highest binding affinity (-9.0 Kcal/mol) as compared to wild KIF5A (-8.4 Kcal/mol). Further, with the systems biology approach, we constructed the KIF5A protein-protein interaction (PPI) network to identify the associated Kinesin Families (KIFs) proteins, modules, and their function. We also constructed a transcriptional and post-transcriptional regulatory network of KIF5A. With the network topological parameters of PPIN (Degree, Bottleneck, Closeness, and MNC) using CytoHubba and computational knock-out experiment using Network Analyzer, we found KIF1A, 5B, and 5C were the significant proteins. The functional modules were highly enriched with microtubule motor activity, chemical synaptic transmission in neurons, GTP binding, and GABA receptor activity. In regulatory network analysis, we found KIF5A post-transcriptionally down-regulated by miR-107 which is further transcriptionally up-regulated by four TFs (HIF1A, PPARA, SREBF1, and TP53) and down-regulated by three TFs (ZEB1, ZEB2, and LIN28A). Discussion: We concluded our study by finding a crucial variant of KIF5A and its potential therapeutic target (epigallocatechin gallate) and KIF5A associated significant genes with important regulators which could decrypt the novel therapeutics in ALS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Thirumurthy Madhavan
- Department of Genetic Engineering, Computational Biology Lab, SRM Institute of Science and Technology, Chennai, India
| | | | - Honglae Sohn
- Department of Chemistry and Department of Carbon Materials, Chosun University, Gwangju, Republic of Korea
| | - Shazia Haider
- Department of Biosciences, Jamia Millia University, New Delhi, India
| |
Collapse
|
11
|
Rani A, Saini V, Patra P, Prashar T, Pandey RK, Mishra A, Jha HC. Epigallocatechin Gallate: A Multifaceted Molecule for Neurological Disorders and Neurotropic Viral Infections. ACS Chem Neurosci 2023; 14:2968-2980. [PMID: 37590965 DOI: 10.1021/acschemneuro.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a polyphenolic moiety found in green tea extracts, exhibits pleiotropic bioactivities to combat many diseases including neurological ailments. These neurological diseases include Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. For instance, in the case of Alzheimer's disease, the formation of a β-sheet in the region of the 10th-21st amino acids was significantly reduced in EGCG-induced oligomeric samples of Aβ40. Its interference induces the formation of Aβ structures with an increase in intercenter-of-mass distances, reduction in interchain/intrachain contacts, reduction in β-sheet propensity, and increase in α-helix. Besides, numerous neurotropic viruses are known to instigate or aggravate neurological ailments. It exerts an effect on the oxidative damage caused in neurodegenerative disorders by acting on GSK3-β, PI3K/Akt, and downstream signaling pathways via caspase-3 and cytochrome-c. EGCG also diminishes these viral-mediated effects, such as EGCG delayed HSV-1 infection by blocking the entry for virions, inhibitory effects on NS3/4A protease or NS5B polymerase of HCV and potent inhibitor of ZIKV NS2B-NS3pro/NS3 serine protease (NS3-SP). It showed a reduction in the neurotoxic properties of HIV-gp120 and Tat in the presence of IFN-γ. EGCG also involves numerous viral-mediated inflammatory cascades, such as JAK/STAT. Nonetheless, it also inhibits the Epstein-Barr virus replication protein (Zta and Rta). Moreover, it also impedes certain viruses (influenza A and B strains) by hijacking the endosomal and lysosomal compartments. Therefore, the current article aims to describe the importance of EGCG in numerous neurological diseases and its inhibitory effect against neurotropic viruses.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| | - Vaishali Saini
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| | - Priyanka Patra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| | - Tanish Prashar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, 342030, Jodhpur India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore India
| |
Collapse
|
12
|
Das R, Paul S, Mourya GK, Kumar N, Hussain M. Recent Trends and Practices Toward Assessment and Rehabilitation of Neurodegenerative Disorders: Insights From Human Gait. Front Neurosci 2022; 16:859298. [PMID: 35495059 PMCID: PMC9051393 DOI: 10.3389/fnins.2022.859298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 12/06/2022] Open
Abstract
The study of human movement and biomechanics forms an integral part of various clinical assessments and provides valuable information toward diagnosing neurodegenerative disorders where the motor symptoms predominate. Conventional gait and postural balance analysis techniques like force platforms, motion cameras, etc., are complex, expensive equipment requiring specialist operators, thereby posing a significant challenge toward translation to the clinics. The current manuscript presents an overview and relevant literature summarizing the umbrella of factors associated with neurodegenerative disorder management: from the pathogenesis and motor symptoms of commonly occurring disorders to current alternate practices toward its quantification and mitigation. This article reviews recent advances in technologies and methodologies for managing important neurodegenerative gait and balance disorders, emphasizing assessment and rehabilitation/assistance. The review predominantly focuses on the application of inertial sensors toward various facets of gait analysis, including event detection, spatiotemporal gait parameter measurement, estimation of joint kinematics, and postural balance analysis. In addition, the use of other sensing principles such as foot-force interaction measurement, electromyography techniques, electrogoniometers, force-myography, ultrasonic, piezoelectric, and microphone sensors has also been explored. The review also examined the commercially available wearable gait analysis systems. Additionally, a summary of recent progress in therapeutic approaches, viz., wearables, virtual reality (VR), and phytochemical compounds, has also been presented, explicitly targeting the neuro-motor and functional impairments associated with these disorders. Efforts toward therapeutic and functional rehabilitation through VR, wearables, and different phytochemical compounds are presented using recent examples of research across the commonly occurring neurodegenerative conditions [viz., Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis, Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS)]. Studies exploring the potential role of Phyto compounds in mitigating commonly associated neurodegenerative pathologies such as mitochondrial dysfunction, α-synuclein accumulation, imbalance of free radicals, etc., are also discussed in breadth. Parameters such as joint angles, plantar pressure, and muscle force can be measured using portable and wearable sensors like accelerometers, gyroscopes, footswitches, force sensors, etc. Kinetic foot insoles and inertial measurement tools are widely explored for studying kinematic and kinetic parameters associated with gait. With advanced correlation algorithms and extensive RCTs, such measurement techniques can be an effective clinical and home-based monitoring and rehabilitation tool for neuro-impaired gait. As evident from the present literature, although the vast majority of works reported are not clinically and extensively validated to derive a firm conclusion about the effectiveness of such techniques, wearable sensors present a promising impact toward dealing with neurodegenerative motor disorders.
Collapse
Affiliation(s)
- Ratan Das
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Sudip Paul
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Gajendra Kumar Mourya
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, India
| | - Neelesh Kumar
- Biomedical Applications Unit, Central Scientific Instruments Organisation, Chandigarh, India
| | - Masaraf Hussain
- Department of Neurology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, India
| |
Collapse
|
13
|
Li S, Zhu Y, Wei C, Li C, Chen W, Jiang S, Yuan D, Xu R. Identification of Molecular Correlations Between DHRS4 and Progressive Neurodegeneration in Amyotrophic Lateral Sclerosis By Gene Co-Expression Network Analysis. Front Immunol 2022; 13:874978. [PMID: 35479082 PMCID: PMC9035787 DOI: 10.3389/fimmu.2022.874978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, and its candidate biomarkers have not yet been fully elucidated in previous studies. Therefore, with the present study, we aim to define and verify effective biomarkers of ALS by bioinformatics. Here, we employed differentially expressed gene (DEG) analysis, weighted gene co-expression network analysis (WGCNA), enrichment analysis, immune infiltration analysis, and protein-protein interaction (PPI) to identify biomarkers of ALS. To validate the biomarkers, we isolated the lumbar spinal cord from mice and characterized them using Western blotting and immunofluorescence. The results showed that Dhrs4 expression in the spinal cord was upregulated with the progression of SOD1G93A mice, and the upregulation of DHRS4 and its synergistic DHRS3 might be primarily associated with the activation of the complement cascade in the immune system (C1QA, C1QB, C1QC, C3, and ITGB2), which might be a novel mechanism that induces spinal neurodegeneration in ALS. We propose that DHRS4 and its synergistic DHRS3 are promising molecular markers for detecting ALS progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital, Affiliated People’s Hospital of Nanchang University, Nanchang, China
| |
Collapse
|