1
|
Rodríguez-López M, Sepúlveda-Martínez Á, Bernardino G, Crovetto F, Pajuelo C, Sitges M, Bijnens B, Gratacós E, Crispi F. Cardiometabolic sex differences in adults born small for gestational age. Front Cardiovasc Med 2023; 10:1223928. [PMID: 37953765 PMCID: PMC10634502 DOI: 10.3389/fcvm.2023.1223928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Aim This study aimed to assess the cardiometabolic sex similarities and differences in adults born small for gestational age. Methods This study was an ambispective cohort study from a birth registry in Barcelona, Spain, including 523 adult participants (20-40 years-old) subdivided as born small for gestational age (SGA, if birth weight <10th centile) or adequate fetal growth for gestational age (AGA). Cardiometabolic health was assessed by echocardiography, electrocardiogram, blood pressure measurement, vascular ultrasound, anthropometric measurements, and serum glycemia and lipid profile. Stratified analyses by sex were performed by estimation of adjusted absolute difference (AAD) using inverse probability weighting. Results Compared with AGA, the stratified analyses by sex showed a more pronounced reduction in ejection fraction [AAD: female -1.73 (95% CI -3.2 to -0.28) vs. male -1.33 (-3.19 to 0.52)] and increment in heart rate [female 3.04 (0.29-5.8) vs. male 2.25 (-0.82 to 5.31)] in SGA females compared with SGA males. In contrast, a more pronounced reduction in PR interval [female -1.36 (-6.15 to 3.42) vs. male -6.61 (-11.67 to -1.54)] and an increase in systolic blood pressure [female 0.06 (-2.7 to 2.81) vs. male 2.71 (-0.48 to 5.9)] and central-to-peripheral fat ratio [female 0.05 (-0.03 to 0.12) vs. male 0.40 (0.17-0.62)] were mainly observed in SGA male compared with SGA female. Conclusions Sex differences were observed in the effect of SGA on cardiometabolic endpoints with female being more prone to cardiac dysfunction and male to electrocardiographic, vascular, and metabolic changes. Future research including sex-stratification data is warranted.
Collapse
Affiliation(s)
- Mérida Rodríguez-López
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Centro de Investigaciones Biomédica en Red – Enfermedades Raras, Universitat de Barcelona, Barcelona, Spain
- Faculty of Health Science, Universidad Icesi, Cali, Colombia
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Álvaro Sepúlveda-Martínez
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Centro de Investigaciones Biomédica en Red – Enfermedades Raras, Universitat de Barcelona, Barcelona, Spain
- Fetal Medicine Unit, Department of Obstetrics and Gynecology, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Gabriel Bernardino
- BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesca Crovetto
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Centro de Investigaciones Biomédica en Red – Enfermedades Raras, Universitat de Barcelona, Barcelona, Spain
| | - Carolina Pajuelo
- Institut Clínic Cardiovascular, Hospital Clínic, Centre for Biomedical Research on CardioVascular Diseases (CIBERCV), Universitat de Barcelona, Barcelona, Spain
| | - Marta Sitges
- Institut Clínic Cardiovascular, Hospital Clínic, Centre for Biomedical Research on CardioVascular Diseases (CIBERCV), Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
| | - Bart Bijnens
- Institut d’Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Centro de Investigaciones Biomédica en Red – Enfermedades Raras, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
| | - Fàtima Crispi
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Centro de Investigaciones Biomédica en Red – Enfermedades Raras, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
| |
Collapse
|
2
|
Rodríguez-Rodríguez P, Poasakate A, Ruvira-Hernando S, Gutierrez-Arzapalo PY, Böger R, Hannemann J, Lüneburg N, Arribas SM. Vascular nitrosative stress in hypertension induced by fetal undernutrition in rats. J Physiol Biochem 2023; 79:555-568. [PMID: 36821073 PMCID: PMC10338582 DOI: 10.1007/s13105-023-00949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Fetal undernutrition predisposes to hypertension development. Since nitric oxide (NO) is a key factor in blood pressure control, we aimed to investigate the role of NO alterations in hypertension induced by fetal undernutrition in rats. Male and female offspring from dams exposed to undernutrition during the second half of gestation (MUN) were studied at 21 days (normotensive) and 6 months of age (hypertension developed only in males). In aorta, we analyzed total and phosphorylated endothelial NO synthase (eNOS, p-eNOS), 3-nitrotyrosine (3-NT), and Nrf2 (Western blot). In plasma we assessed L-arginine, asymmetric and symmetric dimethylarginine (ADMA, SDMA; LC-MS/MS), nitrates (NOx, Griess reaction), carbonyl groups, and lipid peroxidation (spectrophotometry). In iliac arteries, we studied superoxide anion production (DHE staining, confocal microscopy) and vasodilatation to acetylcholine (isometric tension). Twenty-one-day-old MUN offspring did not show alterations in vascular e-NOS or 3NT expression, plasma L-Arg/ADMA ratio, or NOx. Compared to control group, 6-month-old MUN rats showed increased aortic expression of p-eNOS/eNOS and 3-NT, being Nrf2 expression lower, elevated plasma L-arginine/ADMA, NOx and carbonyl levels, increased iliac artery DHE staining and reduced acetylcholine-mediated relaxations. These alterations in MUN rats were sex-dependent, affecting males. However, females showed some signs of endothelial dysfunction. We conclude that increased NO production in the context of a pro-oxidative environment, leads to vascular nitrosative damage and dysfunction, which can participate in hypertension development in MUN males. Females show a better adaptation, but signs of endothelial dysfunction, which can explain hypertension in ageing.
Collapse
Affiliation(s)
- Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029, Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) multidisciplinary research group, Universidad Autónoma de Madrid, Madrid, Spain
| | - Anuson Poasakate
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Santiago Ruvira-Hernando
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029, Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) multidisciplinary research group, Universidad Autónoma de Madrid, Madrid, Spain
- PhD student at Pharmacology and Physiology PhD Program, Doctorate School, Universidad Autónoma de Madrid, Madrid, Spain
| | - Perla Y Gutierrez-Arzapalo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029, Madrid, Spain
- Present address: Centro de Investigación y Docencia en Ciencias de la Salud (CIDOCS), Universidad Autónoma de Sinaloa, Sinaloa, Mexico
| | - Rainer Böger
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juliane Hannemann
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Lüneburg
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silvia M Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 2, 28029, Madrid, Spain.
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) multidisciplinary research group, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Krausova V, Neumann D, Kraus J, Dostalova V, Dostal P. Sublingual microcirculation in healthy pediatric population using the sidestream dark-field imaging method. Clin Hemorheol Microcirc 2023; 85:163-171. [PMID: 37599527 DOI: 10.3233/ch-231851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND The sidestream dark-field imaging method is used to study microcirculation. Normal values of sublingual microcirculation parameters in healthy children of different age and gender categories are unknown. OBJECTIVE The study's main goal was to determine normal values of selected parameters of sublingual microcirculation in healthy children of different age and gender categories. METHODS 40 healthy children were measured, ten aged 3-5.9 years, ten aged 6-10.9 years, ten aged 11-14.9 years, and ten aged 15-18.9 years. After recording the basic anthropometric parameters and vital functions, each volunteer had their microcirculation measured using an SDF probe placed sublingually. Three video clips were recorded and processed offline, and the three best and most stable parts of each were analyzed. RESULTS Total vascular density, small vessel density, proportion of perfused small vessels, perfused vessel density, perfused small vessel density, and DeBacker's score were significantly higher in females than in males. There were no differences between age groups in microcirculation parameters except MFI. CONCLUSIONS Age does not influence normal values of microcirculatory parameters. Female gender was associated with higher vessel density, perfused vessel density, and DeBacker's score. A suggestion of the normal range of microcirculatory parameters in healthy children is provided.
Collapse
Affiliation(s)
- Vlasta Krausova
- Department of Pediatrics, Masaryk Hospital, Krajska Zdravotni, Usti nad Labem, Czech Republic
- Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralové, Czech Republic
| | - David Neumann
- Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralové, Czech Republic
- Department of Pediatrics, Trutnov Hospital, Trutnov, Czech Republic
- Department of Pediatrics, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jaroslav Kraus
- Department od Orthopedics, Masaryk Hospital, Krajska Zdravotni, Usti nad Labem, Czech Republic
| | - Vlasta Dostalova
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Pavel Dostal
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Estrogen normalizes maternal HFD-induced vascular dysfunction in offspring by regulating ATR. Hypertens Res 2022; 45:1743-1753. [PMID: 35999282 DOI: 10.1038/s41440-022-01002-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 12/26/2022]
Abstract
Previous studies have shown that female offspring are resistant to fetal high-fat diet (HFD)-induced programming of heightened vascular contraction; however, the underlying mechanisms remain unclear. The present study tested the hypothesis that estrogen plays a key role in protecting females from fetal programming of increased vascular contraction induced by maternal HFD exposure. Pregnant rats were fed a normal diet (ND) or HFD (60% kcal from fat). Ovariectomy (OVX) and 17β-estradiol (E2) replacement were performed on 8-week-old female offspring. Aortas were isolated from adult female offspring. Maternal HFD exposure increased angiotensin II (Ang II)-induced contractions of the aorta in adult OVX offspring, which was abrogated by E2 replacement. The AT1 receptor (AT1R) antagonist losartan (10 μM), but not the AT2 receptor (AT2R) antagonist PD123319 (10 μM), completely blocked Ang II-induced contractions in both ND and HFD offspring. In addition, HFD exposure caused a decrease in endothelium-dependent relaxations induced by acetylcholine (ACh) in adult OVX but not OVX-E2 offspring. However, it had no effect on sodium nitroprusside (SNP)-induced endothelium-independent aorta relaxation in any of the six groups. Maternal HFD feeding increased AT1R, but not AT2R, leading to an increased AT1R/AT2R ratio in HFD-exposed OVX offspring, associated with selective decreases in DNA methylation at the AT1aR promoter, which was ameliorated by E2 replacement. Our results indicated that estrogen play a key role in sex differences of maternal HFD-induced vascular dysfunction and development of hypertensive phenotype in adulthood by differently regulating vascular AT1R and AT2R gene expression through a DNA methylation mechanism.
Collapse
|
5
|
Lamothe J, Khurana S, Tharmalingam S, Williamson C, Byrne CJ, Lees SJ, Khaper N, Kumar A, Tai T. Oxidative Stress Mediates the Fetal Programming of Hypertension by Glucocorticoids. Antioxidants (Basel) 2021; 10:antiox10040531. [PMID: 33805403 PMCID: PMC8066984 DOI: 10.3390/antiox10040531] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The field of cardiovascular fetal programming has emphasized the importance of the uterine environment on postnatal cardiovascular health. Studies have linked increased fetal glucocorticoid exposure, either from exogenous sources (such as dexamethasone (Dex) injections), or from maternal stress, to the development of adult cardiovascular pathologies. Although the mechanisms are not fully understood, alterations in gene expression driven by altered oxidative stress and epigenetic pathways are implicated in glucocorticoid-mediated cardiovascular programming. Antioxidants, such as the naturally occurring polyphenol epigallocatechin gallate (EGCG), or the superoxide dismutase (SOD) 4-hydroxy-TEMPO (TEMPOL), have shown promise in the prevention of cardiovascular dysfunction and programming. This study investigated maternal antioxidant administration with EGCG or TEMPOL and their ability to attenuate the fetal programming of hypertension via Dex injections in WKY rats. Results from this study indicate that, while Dex-programming increased blood pressure in male and female adult offspring, administration of EGCG or TEMPOL via maternal drinking water attenuated Dex-programmed increases in blood pressure, as well as changes in adrenal mRNA and protein levels of catecholamine biosynthetic enzymes phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH), dopamine beta hydroxylase (DBH), and phenylethanolamine N-methyltransferase (PNMT), in a sex-specific manner. Furthermore, programmed male offspring displayed reduced antioxidant glutathione peroxidase 1 (Gpx1) expression, increased superoxide dismutase 1 (SOD1) and catalase (CAT) expression, and increased pro-oxidant NADPH oxidase activator 1 (Noxa1) expression in the adrenal glands. In addition, prenatal Dex exposure alters expression of epigenetic regulators histone deacetylase (HDAC) 1, 5, 6, 7, 11, in male and HDAC7 in female offspring. These results suggest that glucocorticoids may mediate the fetal programming of hypertension via alteration of epigenetic machinery and oxidative stress pathways.
Collapse
Affiliation(s)
- Jeremy Lamothe
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (J.L.); (S.T.); (N.K.); (A.K.)
| | - Sandhya Khurana
- Medical Science Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada;
| | - Sujeenthar Tharmalingam
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (J.L.); (S.T.); (N.K.); (A.K.)
- Medical Science Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada;
- Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada; (C.W.); (C.J.B.)
| | - Chad Williamson
- Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada; (C.W.); (C.J.B.)
| | - Collin J. Byrne
- Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada; (C.W.); (C.J.B.)
| | - Simon J. Lees
- Biology, Lakehead University, Thunder Bay, ON P3E 2C6, Canada;
- Medical Science Division, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| | - Neelam Khaper
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (J.L.); (S.T.); (N.K.); (A.K.)
- Biology, Lakehead University, Thunder Bay, ON P3E 2C6, Canada;
- Medical Science Division, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| | - Aseem Kumar
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (J.L.); (S.T.); (N.K.); (A.K.)
- Medical Science Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada;
- Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada; (C.W.); (C.J.B.)
| | - T.C. Tai
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (J.L.); (S.T.); (N.K.); (A.K.)
- Medical Science Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada;
- Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada; (C.W.); (C.J.B.)
- Correspondence:
| |
Collapse
|
6
|
Sexual dimorphism of miRNA signatures in feto-placental endothelial cells is associated with altered barrier function and actin organization. Clin Sci (Lond) 2020; 134:39-51. [PMID: 31825070 DOI: 10.1042/cs20190379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
Abstract
Endothelial function and the risk for endothelial dysfunction differ between males and females. Besides the action of estrogen, sex chromosome gene expression and programming effects also provoke this sexual dimorphism. MicroRNAs (miRNAs) have emerged as regulators of endothelial cell function and dysfunction. We here hypothesized distinct miRNA expression patterns in male versus female human endothelial cells that contribute to the functional differences. We used our well-established model of fetal endothelial cells isolated from placenta (fpEC) and analyzed sexual dimorphic miRNA expression and potentially affected biological functions. Next-generation miRNA sequencing of fpEC isolated after pregnancies with male and female neonates identified sex-dependent miRNA expression patterns. Potential biological pathways regulated by the altered set of miRNAs were determined using mirPath and mirSystem softwares, and suggested differences in barrier function and actin organization. The identified pathways were further investigated by monolayer impedance measurements (ECIS) and analysis of F-actin organization (Phalloidin). Nine miRNAs were differentially expressed in fpEC of male versus female neonates. Functional pathways most significantly regulated by these miRNAs included 'Adherens junction', 'ECM receptor interaction' and 'Focal adhesion'. These pathways control monolayer barrier function and may be paralleled by altered cytoskeletal organization. In fact, monolayer impedance was higher in fpEC of male progeny, and F-actin staining revealed more pronounced peripheral stress fibers in male versus female fpEC. Our data highlight that endothelial cell function differs between males and females already in utero, and that altered miRNAs are associated with sex dependent differences in barrier function and actin organization.
Collapse
|