1
|
Rocchi A, Sariyer IK, Berger JR. Revisiting JC virus and progressive multifocal leukoencephalopathy. J Neurovirol 2023; 29:524-537. [PMID: 37659983 DOI: 10.1007/s13365-023-01164-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 09/04/2023]
Abstract
Since its definition 65 years ago, progressive multifocal leukoencephalopathy (PML) has continued to devastate a growing population of immunosuppressed patients despite major advances in our understanding of the causative JC virus (JCV). Unless contained by the immune system, JCV lyses host oligodendrocytes collateral to its life cycle, leading to demyelination, neurodegeneration, and death. Novel treatments have stagnated in the absence of an animal model while current antiviral agents fail to address the now ubiquitous polyomavirus. In this review, we highlight the established pathogenesis by which JCV infection progresses to PML, highlighting major challenges that must be overcome to eliminate the underlying virus and, therefore, the debilitating disease.
Collapse
Affiliation(s)
- Angela Rocchi
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ilker K Sariyer
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| | - Joseph R Berger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Convention Avenue, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
de Gea-Grela A, Moreno S. Controversies in the Design of Strategies for the Cure of HIV Infection. Pathogens 2023; 12:322. [PMID: 36839593 PMCID: PMC9961067 DOI: 10.3390/pathogens12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
The cure for chronic human immunodeficiency virus (HIV) infections has been a goal pursued since the antiretroviral therapy that improved the clinical conditions of patients became available. However, the exclusive use of these drugs is not enough to achieve a cure, since the viral load rebounds when the treatment is discontinued, leading to disease progression. There are several theories and hypotheses about the biological foundations that prevent a cure. The main obstacle appears to be the existence of a latent viral reservoir that cannot be eliminated pharmacologically. This concept is the basis of the new strategies that seek a cure, known as kick and kill. However, there are other lines of study that recognize mechanisms of persistent viral replication in patients under effective treatment, and that would modify the current lines of research on the cure of HIV. Given the importance of these concepts, in this work, we propose to review the most recent evidence on these hypotheses, covering both the evidence that is positioned in favor and against, trying to expose what are some of the challenges that remain to be resolved in this field of research.
Collapse
Affiliation(s)
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Alcalá University, 28034 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28034 Madrid, Spain
| |
Collapse
|
3
|
Mohamed H, Berman R, Connors J, Haddad EK, Miller V, Nonnemacher MR, Dampier W, Wigdahl B, Krebs FC. Immunomodulatory Effects of Non-Thermal Plasma in a Model for Latent HIV-1 Infection: Implications for an HIV-1-Specific Immunotherapy. Biomedicines 2023; 11:122. [PMID: 36672628 PMCID: PMC9856147 DOI: 10.3390/biomedicines11010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
In people living with HIV-1 (PLWH), antiretroviral therapy (ART) eventually becomes necessary to suppress the emergence of human immunodeficiency virus type 1 (HIV-1) replication from latent reservoirs because HIV-1-specific immune responses in PLWH are suboptimal. Immunotherapies that enhance anti-HIV-1 immune responses for better control of virus reemergence from latent reservoirs are postulated to offer ART-free control of HIV-1. Toward the goal of developing an HIV-1-specific immunotherapy based on non-thermal plasma (NTP), the early immunological responses to NTP-exposed latently infected T lymphocytes were examined. Application of NTP to the J-Lat T-lymphocyte cell line (clones 10.6 and 15.4) stimulated monocyte recruitment and macrophage maturation, which are key steps in initiation of an immune response. In contrast, CD8+ T lymphocytes in a mixed lymphocyte reaction assay were not stimulated by the presence of NTP-exposed J-Lat cells. Furthermore, co-culture of NTP-exposed J-Lat cells with mature phagocytes did not modulate their antigen presentation to primary CD8+ T lymphocytes (cross-presentation). However, reactivation from latency was stimulated in a clone-specific manner by NTP. Overall, these studies, which demonstrated that ex vivo application of NTP to latently infected lymphocytes can stimulate key immune cell responses, advance the development of an NTP-based immunotherapy that will provide ART-free control of HIV-1 reactivation in PLWH.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Rachel Berman
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Jennifer Connors
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elias K. Haddad
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Vandana Miller
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Fred C. Krebs
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
4
|
Immunometabolic Reprogramming in Response to HIV Infection Is Not Fully Normalized by Suppressive Antiretroviral Therapy. Viruses 2022; 14:v14061313. [PMID: 35746785 PMCID: PMC9228482 DOI: 10.3390/v14061313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background: HIV infection results in immunometabolic reprogramming. While we are beginning to understand how this metabolic reprogramming regulates the immune response to HIV infection, we do not currently understand the impact of ART on immunometabolism in people with HIV (PWH). Methods: Serum obtained from HIV-infected (n = 278) and geographically matched HIV seronegative control subjects (n = 300) from Rakai Uganda were used in this study. Serum was obtained before and ~2 years following the initiation of ART from HIV-infected individuals. We conducted metabolomics profiling of the serum and focused our analysis on metabolic substrates and pathways assocaited with immunometabolism. Results: HIV infection was associated with metabolic adaptations that implicated hyperactive glycolysis, enhanced formation of lactate, increased activity of the pentose phosphate pathway (PPP), decreased β-oxidation of long-chain fatty acids, increased utilization of medium-chain fatty acids, and enhanced amino acid catabolism. Following ART, serum levels of ketone bodies, carnitine, and amino acid metabolism were normalized, however glycolysis, PPP, lactate production, and β-oxidation of long-chain fatty acids remained abnormal. Conclusion: Our findings suggest that HIV infection is associated with an increased immunometabolic demand that is satisfied through the utilization of alternative energetic substrates, including fatty acids and amino acids. ART alone was insufficient to completely restore this metabolic reprogramming to HIV infection, suggesting that a sustained impairment of immunometabolism may contribute to chronic immune activation and comorbid conditions in virally suppressed PWH.
Collapse
|
5
|
Mohamed H, Gurrola T, Berman R, Collins M, Sariyer IK, Nonnemacher MR, Wigdahl B. Targeting CCR5 as a Component of an HIV-1 Therapeutic Strategy. Front Immunol 2022; 12:816515. [PMID: 35126374 PMCID: PMC8811197 DOI: 10.3389/fimmu.2021.816515] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Globally, human immunodeficiency virus type 1 (HIV-1) infection is a major health burden for which successful therapeutic options are still being investigated. Challenges facing current drugs that are part of the established life-long antiretroviral therapy (ART) include toxicity, development of drug resistant HIV-1 strains, the cost of treatment, and the inability to eradicate the provirus from infected cells. For these reasons, novel anti-HIV-1 therapeutics that can prevent or eliminate disease progression including the onset of the acquired immunodeficiency syndrome (AIDS) are needed. While development of HIV-1 vaccination has also been challenging, recent advancements demonstrate that infection of HIV-1-susceptible cells can be prevented in individuals living with HIV-1, by targeting C-C chemokine receptor type 5 (CCR5). CCR5 serves many functions in the human immune response and is a co-receptor utilized by HIV-1 for entry into immune cells. Therapeutics targeting CCR5 generally involve gene editing techniques including CRISPR, CCR5 blockade using antibodies or antagonists, or combinations of both. Here we review the efficacy of these approaches and discuss the potential of their use in the clinic as novel ART-independent therapies for HIV-1 infection.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Theodore Gurrola
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rachel Berman
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Mackenzie Collins
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Brian Wigdahl,
| |
Collapse
|
6
|
Niemeyer BF, Sanford B, Gibson JE, Berger JN, Oko LM, Medina E, Clambey ET, van Dyk LF. The gammaherpesvirus 68 viral cyclin facilitates expression of LANA. PLoS Pathog 2021; 17:e1010019. [PMID: 34780571 PMCID: PMC8629379 DOI: 10.1371/journal.ppat.1010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/29/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Gammaherpesviruses establish life-long infections within their host and have been shown to be the causative agents of devastating malignancies. Chronic infection within the host is mediated through cycles of transcriptionally quiescent stages of latency with periods of reactivation into detectable lytic and productive infection. The mechanisms that regulate reactivation from latency remain poorly understood. Previously, we defined a critical role for the viral cyclin in promoting reactivation from latency. Disruption of the viral cyclin had no impact on the frequency of cells containing viral genome during latency, yet it remains unclear whether the viral cyclin influences latently infected cells in a qualitative manner. To define the impact of the viral cyclin on properties of latent infection, we utilized a viral cyclin deficient variant expressing a LANA-beta-lactamase fusion protein (LANA::βla), to enumerate both the cellular distribution and frequency of LANA gene expression. Disruption of the viral cyclin did not affect the cellular distribution of latently infected cells, but did result in a significant decrease in the frequency of cells that expressed LANA::βla across multiple tissues and in both immunocompetent and immunodeficient hosts. Strikingly, whereas the cyclin-deficient virus had a reactivation defect in bulk culture, sort purified cyclin-deficient LANA::βla expressing cells were fully capable of reactivation. These data emphasize that the γHV68 latent reservoir is comprised of at least two distinct stages of infection characterized by differential LANA expression, and that a primary function of the viral cyclin is to promote LANA expression during latency, a state associated with ex vivo reactivation competence. Gammaherpesviruses are ubiquitous viruses with oncogenic potential that establish latency for the life of the host. These viruses can emerge from latency through reactivation, a process that is controlled by the immune system. Control of viral latency and reactivation is thought to be critical to prevent γHV-associated disease. This study focuses on a virally-encoded cyclin that is required for reactivation from latency. By characterizing how the viral cyclin influences latent infection in pure cell populations, we find that the viral cyclin has a vital role in promoting viral gene expression during latency. This work provides new insight into the function of a virally encoded cyclin in promoting reactivation from latency.
Collapse
Affiliation(s)
- Brian F. Niemeyer
- Immunology and Microbiology Department, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Bridget Sanford
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Joy E. Gibson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jennifer N. Berger
- Immunology and Microbiology Department, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Lauren M. Oko
- Immunology and Microbiology Department, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Eva Medina
- Immunology and Microbiology Department, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Eric T. Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Linda F. van Dyk
- Immunology and Microbiology Department, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
7
|
Plasek LM, Valadkhan S. lncRNAs in T lymphocytes: RNA regulation at the heart of the immune response. Am J Physiol Cell Physiol 2021; 320:C415-C427. [PMID: 33296288 PMCID: PMC8294623 DOI: 10.1152/ajpcell.00069.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genome-wide analyses in the last decade have uncovered the presence of a large number of long non-protein-coding transcripts that show highly tissue- and state-specific expression patterns. High-throughput sequencing analyses in diverse subsets of immune cells have revealed a complex and dynamic expression pattern for these long noncoding RNAs (lncRNAs) that correlate with the functional states of immune cells. Although the vast majority of lncRNAs expressed in immune cells remain unstudied, functional studies performed on a small subset have indicated that their state-specific expressions pattern frequently has a regulatory impact on the function of immune cells. In vivo and in vitro studies have pointed to the involvement of lncRNAs in a wide variety of cellular processes, including both the innate and adaptive immune response through mechanisms ranging from epigenetic and transcriptional regulation to sequestration of functional molecules in subcellular compartments. This review will focus mainly on the role of lncRNAs in CD4+ and CD8+ T cells, which play pivotal roles in adaptive immunity. Recent studies have pointed to key physiological functions for lncRNAs during several developmental and functional stages of the life cycle of lymphocytes. Although lncRNAs play important physiological roles in lymphocytic response to antigenic stimulation, differentiation into effector cells, and secretion of cytokines, their dysregulated expression can promote or sustain pathological states such as autoimmunity, chronic inflammation, cancer, and viremia. This, together with their highly cell type-specific expression patterns, makes lncRNAs ideal therapeutic targets and underscores the need for additional studies into the role of these understudied transcripts in adaptive immune response.
Collapse
|
8
|
The assessment of selected MiRNAs profile in HIV, HBV, HCV, HIV/HCV, HIV/HBV Co-infection and elite controllers for determination of biomarker. Microb Pathog 2020; 147:104355. [DOI: 10.1016/j.micpath.2020.104355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
|
9
|
The Evolution of Dendritic Cell Immunotherapy against HIV-1 Infection: Improvements and Outlook. J Immunol Res 2020; 2020:9470102. [PMID: 32537473 PMCID: PMC7267878 DOI: 10.1155/2020/9470102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are key phagocytic cells that play crucial roles in both the innate and adaptive immune responses against the human immunodeficiency virus type 1 (HIV-1). By processing and presenting pathogen-derived antigens, dendritic cells initiate a directed response against infected cells. They activate the adaptive immune system upon recognition of pathogen-associated molecular patterns (PAMPs) on infected cells. During the course of HIV-1 infection, a successful adaptive (cytotoxic CD8+ T-cell) response is necessary for preventing the progression and spread of infection in a variety of cells. Dendritic cells have thus been recognized as a valuable tool in the development of immunotherapeutic approaches and vaccines effective against HIV-1. The advancements in dendritic cell vaccines in cancers have paved the way for applications of this form of immunotherapy to HIV-1 infection. Clinical trials with patients infected with HIV-1 who are well-suppressed by antiretroviral therapy (ART) were recently performed to assess the efficacy of DC vaccines, with the goal of mounting an HIV-1 antigen-specific T-cell response, ideally to clear infection and eliminate the need for long-term ART. This review summarizes and compares methods and efficacies of a number of DC vaccine trials utilizing autologous dendritic cells loaded with HIV-1 antigens. The potential for advancement and novel strategies of improving efficacy of this type of immunotherapy is also discussed.
Collapse
|
10
|
Hashemi P, Sadowski I. Diversity of small molecule HIV-1 latency reversing agents identified in low- and high-throughput small molecule screens. Med Res Rev 2020; 40:881-908. [PMID: 31608481 PMCID: PMC7216841 DOI: 10.1002/med.21638] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
The latency phenomenon produced by human immunodeficiency virus (HIV-1) prevents viral clearance by current therapies, and consequently development of a cure for HIV-1 disease represents a formidable challenge. Research over the past decade has resulted in identification of small molecules that are capable of exposing HIV-1 latent reservoirs, by reactivation of viral transcription, which is intended to render these infected cells sensitive to elimination by immune defense recognition or apoptosis. Molecules with this capability, known as latency-reversing agents (LRAs) could lead to realization of proposed HIV-1 cure strategies collectively termed "shock and kill," which are intended to eliminate the latently infected population by forced reactivation of virus replication in combination with additional interventions that enhance killing by the immune system or virus-mediated apoptosis. Here, we review efforts to discover novel LRAs via low- and high-throughput small molecule screens, and summarize characteristics and biochemical properties of chemical structures with this activity. We expect this analysis will provide insight toward further research into optimized designs for new classes of more potent LRAs.
Collapse
Affiliation(s)
- Pargol Hashemi
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ivan Sadowski
- Biochemistry and Molecular Biology, Molecular Epigenetics, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
11
|
Epigenetics, HIV, and Cardiovascular Disease Risk. Curr Probl Cardiol 2020; 46:100615. [PMID: 32507271 DOI: 10.1016/j.cpcardiol.2020.100615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus (HIV) is currently considered a risk factor for cardiovascular disease (CVD). With the advent of antiretroviral treatment and prevention, HIV-related morbidity and mortality rates have decreased significantly. Prolonged life expectancy heralded higher prevalence of diseases of aging, including CVD-associated morbidity and mortality, having an earlier onset in people living with HIV (PLHIV) compared to their noninfected counterparts. Several epigenetic biomarkers are now available as predictors of health and disease, with DNA methylation being one of the most widely studied. Epigenetic biomarkers are changes in gene expression without alterations to the intrinsic DNA sequence, with the potential to predict risk of future CVD, as well as the outcome and response to therapy among PLHIV. We sought to review the available literature referencing epigenetic markers to determine underlying biomechanism predisposing high-risk PLHIV to CVD, elucidating areas of possible intervention.
Collapse
|
12
|
Proust A, Barat C, Leboeuf M, Drouin J, Gagnon MT, Vanasse F, Tremblay MJ. HIV-1 infection and latency-reversing agents bryostatin-1 and JQ1 disrupt amyloid beta homeostasis in human astrocytes. Glia 2020; 68:2212-2227. [DOI: 10.1002/glia.23833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Alizé Proust
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL; Québec QC Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL; Québec QC Canada
| | - Mathieu Leboeuf
- Département d'obstétrique, gynécologie et reproduction, Faculté de Médecine; Université Laval; Québec QC Canada
| | - Jean Drouin
- Département de médecine familiale et médecine d'urgence, Faculté de Médecine; Université Laval; Québec QC Canada
| | - Marie-Thérèse Gagnon
- Clinique de planification des naissances, Centre Hospitalier Universitaire de Québec-Université Laval, Hôpital Saint-François d'Assise; Québec QC Canada
| | - François Vanasse
- Clinique de planification des naissances, Centre Hospitalier Universitaire de Québec-Université Laval, Hôpital Saint-François d'Assise; Québec QC Canada
| | - Michel J. Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL; Québec QC Canada
- Département de Microbiologie-infectiologie et immunologie, Faculté de Médecine; Université Laval; Québec QC Canada
| |
Collapse
|
13
|
Chung CH, Allen AG, Sullivan NT, Atkins A, Nonnemacher MR, Wigdahl B, Dampier W. Computational Analysis Concerning the Impact of DNA Accessibility on CRISPR-Cas9 Cleavage Efficiency. Mol Ther 2020; 28:19-28. [PMID: 31672284 PMCID: PMC6953893 DOI: 10.1016/j.ymthe.2019.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Defining the variables that impact the specificity of CRISPR/Cas9 has been a major research focus. Whereas sequence complementarity between guide RNA and target DNA substantially dictates cleavage efficiency, DNA accessibility of the targeted loci has also been hypothesized to be an important factor. In this study, functional data from two genome-wide assays, genome-wide, unbiased identification of DSBs enabled by sequencing (GUIDE-seq) and circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), have been computationally analyzed in conjunction with DNA accessibility determined via DNase I-hypersensitive sequencing from the Encyclopedia of DNA Elements (ENCODE) Database and transcriptome from the Sequence Read Archive to determine whether cellular factors influence CRISPR-induced cleavage efficiency. CIRCLE-seq and GUIDE-seq datasets were selected to represent the absence and presence of cellular factors, respectively. Data analysis revealed that correlations between sequence similarity and CRISPR-induced cleavage frequency were altered by the presence of cellular factors that modulated the level of DNA accessibility. The above-mentioned correlation was abolished when cleavage sites were located in less accessible regions. Furthermore, CRISPR-mediated edits were permissive even at regions that were insufficient for most endogenous genes to be expressed. These results provide a strong basis to dissect the contribution of local chromatin modulation markers on CRISPR-induced cleavage efficiency.
Collapse
Affiliation(s)
- Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Alexander G Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Neil T Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Alam MA, Datta PK. Epigenetic Regulation of Excitatory Amino Acid Transporter 2 in Neurological Disorders. Front Pharmacol 2019; 10:1510. [PMID: 31920679 PMCID: PMC6927272 DOI: 10.3389/fphar.2019.01510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
Excitatory amino acid transporter 2 (EAAT2) is the predominant astrocyte glutamate transporter involved in the reuptake of the majority of the synaptic glutamate in the mammalian central nervous system (CNS). Gene expression can be altered without changing DNA sequences through epigenetic mechanisms. Mechanisms of epigenetic regulation, include DNA methylation, post-translational modifications of histones, chromatin remodeling, and small non-coding RNAs. This review is focused on neurological disorders, such as glioblastoma multiforme (GBM), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), bipolar disorder (BD), and neuroHIV where there is evidence that epigenetics plays a role in the reduction of EAAT2 expression. The emerging field of pharmaco-epigenetics provides a novel avenue for epigenetics-based drug therapy. This review highlights findings on the role of epigenetics in the regulation of EAAT2 in different neurological disorders and discusses the current pharmacological approaches used and the potential use of novel therapeutic approaches to induce EAAT2 expression in neurological disorders using CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Afaque Alam
- Department of Neuroscience, Center for Comprehensive NeuroAIDS, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Prasun K Datta
- Department of Neuroscience, Center for Comprehensive NeuroAIDS, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Bellizzi A, Ahye N, Jalagadugula G, Wollebo HS. A Broad Application of CRISPR Cas9 in Infectious Diseases of Central Nervous System. J Neuroimmune Pharmacol 2019; 14:578-594. [PMID: 31512166 PMCID: PMC6898781 DOI: 10.1007/s11481-019-09878-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
Virus-induced diseases or neurological complications are huge socio-economic burden to human health globally. The complexity of viral-mediated CNS pathology is exacerbated by reemergence of new pathogenic neurotropic viruses of high public relevance. Although the central nervous system is considered as an immune privileged organ and is mainly protected by barrier system, there are a vast majority of neurotropic viruses capable of gaining access and cause diseases. Despite continued growth of the patient population and a number of treatment strategies, there is no successful viral specific therapy available for viral induced CNS diseases. Therefore, there is an urgent need for a clear alternative treatment strategy that can effectively target neurotropic viruses of DNA or RNA genome. To address this need, rapidly growing gene editing technology based on CRISPR/Cas9, provides unprecedented control over viral genome editing and will be an effective, highly specific and versatile tool for targeting CNS viral infection. In this review, we discuss the application of this system to control CNS viral infection and associated neurological disorders and future prospects. Graphical Abstract CRISPR/Cas9 technology as agent control over CNS viral infection.
Collapse
Affiliation(s)
- Anna Bellizzi
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Room 756 MERB, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Nicholas Ahye
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Room 756 MERB, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Gauthami Jalagadugula
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Room 756 MERB, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Hassen S Wollebo
- Center for Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Room 756 MERB, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
16
|
Zhao L, Liu M, Ouyang J, Zhu Z, Geng W, Dong J, Xiong Y, Wang S, Zhang X, Qiao Y, Ding H, Sun H, Liang G, Shang H, Han X. The Per-1 Short Isoform Inhibits de novo HIV-1 Transcription in Resting CD4+ T-cells. Curr HIV Res 2019; 16:384-395. [PMID: 30774045 PMCID: PMC6446521 DOI: 10.2174/1570162x17666190218145048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022]
Abstract
Background: Understanding of the restriction of HIV-1 transcription in resting CD4+ T-cells is critical to find a cure for AIDS. Although many negative factors causing HIV-1 transcription blockage in resting CD4+ T-cells have been found, there are still unknown mechanisms to explore. Objective: To explore the mechanism for the suppression of de novo HIV-1 transcription in resting CD4+ T-cells. Methods: In this study, a short isoform of Per-1 expression plasmid was transfected into 293T cells with or without Tat's presence to identify Per-1 as a negative regulator for HIV-1 transcription. Silenc-ing of Per-1 was conducted in resting CD4+ T-cells or monocyte-derived macrophages (MDMs) to evaluate the antiviral activity of Per-1. Additionally, we analyzed the correlation between Per-1 expres-sion and viral loads in vivo, and silenced Per-1 by siRNA technology to investigate the potential anti-HIV-1 roles of Per-1 in vivo in untreated HIV-1-infected individuals. Results: We found that short isoform Per-1 can restrict HIV-1 replication and Tat ameliorates this in-hibitory effect. Silencing of Per-1 could upregulate HIV-1 transcription both in resting CD4+ T-cells and MDMs. Moreover, Per-1 expression is inversely correlated with viral loads in Rapid progressors (RPs) in vivo. Conclusion: These data together suggest that Per-1 is a novel negative regulator of HIV-1 transcrip-tion. This restrictive activity of Per-1 to HIV-1 replication may contribute to HIV-1 latency in resting CD4+ T-cells.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Mei Liu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Jiayue Ouyang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Zheming Zhu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Wenqing Geng
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Jinxiu Dong
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Ying Xiong
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Shumei Wang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Xiaowei Zhang
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Ying Qiao
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Hong Sun
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Guoxin Liang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| |
Collapse
|
17
|
Gantner P, Lee GQ, Rey D, Mesplede T, Partisani M, Cheneau C, Beck-Wirth G, Faller JP, Mohseni-Zadeh M, Martinot M, Wainberg MA, Fafi-Kremer S. Dolutegravir reshapes the genetic diversity of HIV-1 reservoirs. J Antimicrob Chemother 2019; 73:1045-1053. [PMID: 29244129 DOI: 10.1093/jac/dkx475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
Objectives Better understanding of the dynamics of HIV reservoirs under ART is a critical step to achieve a functional HIV cure. Our objective was to assess the genetic diversity of archived HIV-1 DNA over 48 weeks in blood cells of individuals starting treatment with a dolutegravir-based regimen. Methods Eighty blood samples were prospectively and longitudinally collected from 20 individuals (NCT02557997) including: acutely (n = 5) and chronically (n = 5) infected treatment-naive individuals, as well as treatment-experienced individuals who switched to a dolutegravir-based regimen and were either virologically suppressed (n = 5) or had experienced treatment failure (n = 5). The integrase and V3 loop regions of HIV-1 DNA isolated from PBMCs were analysed by pyrosequencing at baseline and weeks 4, 24 and 48. HIV-1 genetic diversity was calculated using Shannon entropy. Results All individuals achieved or maintained viral suppression throughout the study. A low and stable genetic diversity of archived HIV quasispecies was observed in individuals starting treatment during acute infection. A dramatic reduction of the genetic diversity was observed at week 4 of treatment in the other individuals. In these patients and despite virological suppression, a recovery of the genetic diversity of the reservoirs was observed up to 48 weeks. Viral variants bearing dolutegravir resistance-associated substitutions at integrase position 50, 124, 230 or 263 were detected in five individuals (n = 5/20, 25%) from all groups except those who were ART-failing at baseline. None of these substitutions led to virological failure. Conclusions These data demonstrate that the genetic diversity of the HIV-1 reservoir is reshaped following the initiation of a dolutegravir-based regimen and strongly suggest that HIV-1 can continue to replicate despite successful treatment.
Collapse
Affiliation(s)
- Pierre Gantner
- Virology Laboratory, Strasbourg University Hospitals, Strasbourg, France.,Strasbourg University, INSERM, UMR-S 1109, F-67000 Strasbourg, France
| | - Guinevere Q Lee
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - David Rey
- Le Trait d'Union, HIV-infection care center, CHU de Strasbourg, Strasbourg, France
| | - Thibault Mesplede
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Marialuisa Partisani
- Le Trait d'Union, HIV-infection care center, CHU de Strasbourg, Strasbourg, France
| | - Christine Cheneau
- Le Trait d'Union, HIV-infection care center, CHU de Strasbourg, Strasbourg, France
| | - Geneviève Beck-Wirth
- Internal Medicine Department, HIV-infection care center, GHR Mulhouse Sud Alsace, Mulhouse, France
| | - Jean-Pierre Faller
- Department of Infectious Diseases, Hôpital Nord Franche Comté, Belfort, France
| | - Mahsa Mohseni-Zadeh
- Internal Medicine and Rheumatology Department, Hôpital Civil de Colmar, Colmar, France
| | - Martin Martinot
- Internal Medicine and Rheumatology Department, Hôpital Civil de Colmar, Colmar, France
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Samira Fafi-Kremer
- Virology Laboratory, Strasbourg University Hospitals, Strasbourg, France.,Strasbourg University, INSERM, UMR-S 1109, F-67000 Strasbourg, France
| |
Collapse
|
18
|
Humanized Mouse Model of HIV-1 Latency with Enrichment of Latent Virus in PD-1 + and TIGIT + CD4 T Cells. J Virol 2019; 93:JVI.02086-18. [PMID: 30842333 DOI: 10.1128/jvi.02086-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
Combination anti-retroviral drug therapy (ART) potently suppresses HIV-1 replication but does not result in virus eradication or a cure. A major contributing factor is the long-term persistence of a reservoir of latently infected cells. To study this reservoir, we established a humanized mouse model of HIV-1 infection and ART suppression based on an oral ART regimen. Similar to humans, HIV-1 levels in the blood of ART-treated animals were frequently suppressed below the limits of detection. However, the limited timeframe of the mouse model and the small volume of available samples makes it a challenging model with which to achieve full viral suppression and to investigate the latent reservoir. We therefore used an ex vivo latency reactivation assay that allows a semiquantitative measure of the latent reservoir that establishes in individual animals, regardless of whether they are treated with ART. Using this assay, we found that latently infected human CD4 T cells can be readily detected in mouse lymphoid tissues and that latent HIV-1 was enriched in populations expressing markers of T cell exhaustion, PD-1 and TIGIT. In addition, we were able to use the ex vivo latency reactivation assay to demonstrate that HIV-specific TALENs can reduce the fraction of reactivatable virus in the latently infected cell population that establishes in vivo, supporting the use of targeted nuclease-based approaches for an HIV-1 cure.IMPORTANCE HIV-1 can establish latent infections that are not cleared by current antiretroviral drugs or the body's immune responses and therefore represent a major barrier to curing HIV-infected individuals. However, the lack of expression of viral antigens on latently infected cells makes them difficult to identify or study. Here, we describe a humanized mouse model that can be used to detect latent but reactivatable HIV-1 in both untreated mice and those on ART and therefore provides a simple system with which to study the latent HIV-1 reservoir and the impact of interventions aimed at reducing it.
Collapse
|
19
|
Dampier W, Sullivan NT, Mell JC, Pirrone V, Ehrlich GD, Chung CH, Allen AG, DeSimone M, Zhong W, Kercher K, Passic S, Williams JW, Szep Z, Khalili K, Jacobson JM, Nonnemacher MR, Wigdahl B. Broad-Spectrum and Personalized Guide RNAs for CRISPR/Cas9 HIV-1 Therapeutics. AIDS Res Hum Retroviruses 2018; 34:950-960. [PMID: 29968495 PMCID: PMC6238604 DOI: 10.1089/aid.2017.0274] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9 system has been used to excise the HIV-1 proviral genome from latently infected cells, potentially offering a cure for HIV-infected patients. Recent studies have shown that most published HIV-1 guide RNAs (gRNAs) do not account for the diverse viral quasispecies within or among patients, which continue to diversify with time even in long-term antiretroviral therapy (ART)-suppressed patients. Given this observation, proviral genomes were deep sequenced from 23 HIV-1-infected patients in the Drexel Medicine CNS AIDS Research and Eradication Study cohort at two different visits. Based on the spectrum of integrated proviral DNA polymorphisms observed, three gRNA design strategies were explored: based on the patient's own HIV-1 sequences (personalized), based on consensus sequences from a large sample of patients [broad-spectrum (BS)], or a combination of both approaches. Using a bioinformatic algorithm, the personalized gRNA design was predicted to cut 46 of 48 patient samples at 90% efficiency, whereas the top 4 BS gRNAs (BS4) were predicted to excise provirus from 44 of 48 patient samples with 90% efficiency. Using a mixed design with the top three BS gRNAs plus one personalized gRNA (BS3 + PS1) resulted in predicted excision of provirus from 45 of 48 patient samples with 90% efficiency. In summary, these studies used an algorithmic design strategy to identify potential BS gRNAs to target a spectrum of HIV-1 long teriminal repeat (LTR) quasispecies for use with a small HIV-1-infected population. This approach should advance CRISPR/Cas9 excision technology taking into account the extensive molecular heterogeneity of HIV-1 that persists in situ after prolonged ART.
Collapse
Affiliation(s)
- Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Neil T. Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Garth D. Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Otolaryngology—Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Alexander G. Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Mathew DeSimone
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Wen Zhong
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Katherine Kercher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Shendra Passic
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jean W. Williams
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Zsofia Szep
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Center for Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jeffrey M. Jacobson
- Department of Neuroscience, Center for Neurovirology, and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Center for Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Section of Infectious Disease, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
- Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Bermejo M, Ambrosioni J, Bautista G, Climent N, Mateos E, Rovira C, Rodríguez-Mora S, López-Huertas MR, García-Gutiérrez V, Steegmann JL, Duarte R, Cervantes F, Plana M, Miró JM, Alcamí J, Coiras M. Evaluation of resistance to HIV-1 infection ex vivo of PBMCs isolated from patients with chronic myeloid leukemia treated with different tyrosine kinase inhibitors. Biochem Pharmacol 2018; 156:248-264. [PMID: 30142322 DOI: 10.1016/j.bcp.2018.08.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Current antiretroviral treatment (ART) may control HIV-1 replication but it cannot cure the infection due to the formation of a reservoir of latently infected cells. CD4+ T cell activation during HIV-1 infection eliminates the antiviral function of the restriction factor SAMHD1, allowing proviral integration and the reservoir establishment. The role of tyrosine kinases during T-cell activation is essential for these processes. Therefore, the inhibition of tyrosine kinases could control HIV-1 infection and restrict the formation of the reservoir. A family of tyrosine kinase inhibitors (TKIs) is successfully used in clinic for treating chronic myeloid leukemia (CML). The safety and efficacy against HIV-1 infection of five TKIs was assayed in PBMCs isolated from CML patients on prolonged treatment with these drugs that were infected ex vivo with HIV-1. We determined that the most potent and safe TKI against HIV-1 infection was dasatinib, which preserved SAMHD1 antiviral function and avoid T-cell activation through TCR engagement and homeostatic cytokines. Imatinib and nilotinib showed lower potency and bosutinib was quite toxic in vitro. Ponatinib presented similar profile to dasatinib but as it has been associated with higher incidence of arterial ischemic events, dasatinib would be the better choice of TKI to be used as adjuvant of ART in order to avoid the establishment and replenishment of HIV-1 reservoir and move forward towards an HIV cure.
Collapse
Affiliation(s)
- Mercedes Bermejo
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Ambrosioni
- Infectious Diseases Service, AIDS Research Group, Institut d́Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Guiomar Bautista
- Clinical Hematology Service, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Núria Climent
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Elena Mateos
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Rovira
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Sara Rodríguez-Mora
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain; Division of Infection and Immunity, University College of London, UK
| | - María Rosa López-Huertas
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain; Infectious Diseases Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) - Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Juan Luis Steegmann
- Hematology Department, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-IP), Madrid, Spain
| | - Rafael Duarte
- Clinical Hematology Service, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Francisco Cervantes
- Hematology Department, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - José M Miró
- Infectious Diseases Service, AIDS Research Group, Institut d́Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Mahapatra DK, Ghorai S, Bharti SK, Patil AG, Gayen S. Current Discovery Progress of Some Emerging Anti-infective Chalcones: Highlights from 2016 to 2017. Curr Drug Discov Technol 2018; 17:30-44. [PMID: 30033873 DOI: 10.2174/1570163815666180720170030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/22/2022]
Abstract
The anti-infective potentials of the natural products are very well known for centuries and are a part of traditional healing. The foremost therapeutic classes include flavones, isoflavones, flavonols, flavanones, flavanols, proanthocyanidins, anthocyanidins, chalcones, and aurones. The chalcone or 1,3-diphenyl-2E-propene-1-one represents the class of natural products which are comprised of benzylideneacetophenone function; i.e. two aromatic moieties linked together by an α, β-unsaturated carbonyl bridge comprising three-carbons. At present, chalcone is one of the privileged scaffolds that can be synthesized in the laboratory to derive different pharmacologically active compounds. This article is the continued form of the previously published work on anti-infective perspectives of chalcones (highlighted till 2015). The current work emphasizes on the discovery process of the chalcone in the period of 2016 to 2017 on malaria, trypanosomiasis, leishmaniasis, filaria, tuberculosis, netamodes, Human Immunodeficiency Virus (HIV), Tobacco Mosaic Virus (TMV), Severe Acute Respiratory Syndrome (SARS), and miscellaneous conditions. This review comprehensively focuses on the latest progress related with the anti-infective chalcones. The content includes the crucial structural features of chalcone scaffold including structure-activity relationship(s) along with their plausible mechanism of action(s) from the duration Jan 2016 to Dec 2017. This literature will be of prime interest to medicinal chemists in getting ideas and concepts for better rational development of potential anti-infective inhibitors.
Collapse
Affiliation(s)
- Debarshi K Mahapatra
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Soumajit Ghorai
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Sanjay K Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Asmita G Patil
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| |
Collapse
|
22
|
Barat C, Proust A, Deshiere A, Leboeuf M, Drouin J, Tremblay MJ. Astrocytes sustain long-term productive HIV-1 infection without establishment of reactivable viral latency. Glia 2018; 66:1363-1381. [PMID: 29464785 DOI: 10.1002/glia.23310] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
The "shock and kill" HIV-1 cure strategy proposes eradication of stable cellular reservoirs by clinical treatment with latency-reversing agents (LRAs). Although resting CD4+ T cells latently infected with HIV-1 constitute the main reservoir that is targeted by these approaches, their consequences on other reservoirs such as the central nervous system are still unknown and should be taken into consideration. We performed experiments aimed at defining the possible role of astrocytes in HIV-1 persistence in the brain and the effect of LRA treatments on this viral sanctuary. We first demonstrate that the diminished HIV-1 production in a proliferating astrocyte culture is due to a reduced proliferative capacity of virus-infected cells compared with uninfected astrocytes. In contrast, infection of non-proliferating astrocytes led to a robust HIV-1 infection that was sustained for over 60 days. To identify astrocytes latently infected with HIV-1, we designed a new dual-color reporter virus called NL4.3 eGFP-IRES-Crimson that is fully infectious and encodes for all viral proteins. Although we detected a small fraction of astrocytes carrying silent HIV-1 proviruses, we did not observe any reactivation using various LRAs and even strong inducers such as tumor necrosis factor, thus suggesting that these proviruses were either not transcriptionally competent or in a state of deep latency. Our findings imply that astrocytes might not constitute a latent reservoir per se but that relentless virus production by this brain cell population could contribute to the neurological disorders seen in HIV-1-infected persons subjected to combination antiretroviral therapy.
Collapse
Affiliation(s)
- Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Alizé Proust
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Alexandre Deshiere
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Mathieu Leboeuf
- Département d'Obstétrique, Gynécologie et Reproduction, Faculté de Médecine, Université Laval, Québec, Canada
| | - Jean Drouin
- Département de Médecine Familiale et d'urgence, Faculté de Médecine, Université Laval, Québec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada.,Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
23
|
Ao M, Pan Z, Qian Y, Tang B, Feng Z, Fang H, Wu Z, Chen J, Xue Y, Fang M. Design, synthesis, and biological evaluation of AV6 derivatives as novel dual reactivators of latent HIV-1. RSC Adv 2018; 8:17279-17292. [PMID: 35539279 PMCID: PMC9080425 DOI: 10.1039/c8ra01216d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 01/31/2023] Open
Abstract
The “shock and kill” strategy might be a promising therapeutic approach for HIV/AIDS due to the existence of latent viral reservoirs. A major challenge of the “shock and kill” strategy arises from the general lack of clinically effective latency-reversing agents (LRAs). The 2-methylquinoline derivative, antiviral 6 (AV6) has been reported to induce latent HIV-1 expression and act synergistically with a HDAC inhibitor VA to reverse HIV latency. We report herein the design and identification of AV6 analogues which possess the zinc-binding group of HDAC inhibitors and have dual acting mechanism for the reactivation of HIV-1 from latency. Evaluation of compounds for the reactivation of HIV-1 latency identified two excellent active compounds 12c and 12d. Further bioassays revealed that these two compounds reactivated latent HIV-1 through dual mechanism, the inhibition of HDACs and NFAT-required for early HIV-1 gene expression. Additionally, it was found that 12c and 12d could reactivate HIV-1 transcription by releasing P-TEFb from the inactive complex 7SK snRNP. At last, molecular docking identified their orientation and binding interactions at the active site of HDAC2. This experimental data suggests that 12c and 12d can be served as effective HIV-1 LRAs which can be taken up for further studies. As dual-acting HIV LRAs, compounds 12c and 12d could activate latent HIV-1 via the NFAT-required mechanism and as histone deacetylase (HDAC) inhibitors.![]()
Collapse
|
24
|
Wang P, Lu P, Qu X, Shen Y, Zeng H, Zhu X, Zhu Y, Li X, Wu H, Xu J, Lu H, Ma Z, Zhu H. Reactivation of HIV-1 from Latency by an Ingenol Derivative from Euphorbia Kansui. Sci Rep 2017; 7:9451. [PMID: 28842560 PMCID: PMC5573388 DOI: 10.1038/s41598-017-07157-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023] Open
Abstract
Cells harboring latent HIV-1 pose a major obstacle to eradication of the virus. The ‘shock and kill’ strategy has been broadly explored to purge the latent reservoir; however, none of the current latency-reversing agents (LRAs) can safely and effectively activate the latent virus in patients. In this study, we report an ingenol derivative called EK-16A, isolated from the traditional Chinese medicinal herb Euphorbia kansui, which displays great potential in reactivating latent HIV-1. A comparison of the doses used to measure the potency indicated EK-16A to be 200-fold more potent than prostratin in reactivating HIV-1 from latently infected cell lines. EK-16A also outperformed prostratin in ex vivo studies on cells from HIV-1-infected individuals, while maintaining minimal cytotoxicity effects on cell viability and T cell activation. Furthermore, EK-16A exhibited synergy with other LRAs in reactivating latent HIV-1. Mechanistic studies indicated EK-16A to be a PKCγ activator, which promoted both HIV-1 transcription initiation by NF-κB and elongation by P-TEFb signal pathways. Further investigations aimed to add this compound to the therapeutic arsenal for HIV-1 eradication are in the pipeline.
Collapse
Affiliation(s)
- Pengfei Wang
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiying Qu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yinzhong Shen
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, China
| | - Hanxian Zeng
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaoli Zhu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xian Li
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, 100069, China
| | - Jianqing Xu
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, China
| | - Hongzhou Lu
- Department of Infectious Diseases, and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200433, China
| | - Zhongjun Ma
- Institute of Marine Biology, Ocean College, Zhejiang University, Hangzhou, 310058, China.
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
25
|
Novel AIDS therapies based on gene editing. Cell Mol Life Sci 2017; 74:2439-2450. [PMID: 28210784 DOI: 10.1007/s00018-017-2479-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 01/03/2023]
Abstract
HIV/AIDS remains a major public health issue. In 2014, it was estimated that 36.9 million people are living with HIV worldwide, including 2.6 million children. Since the advent of combination antiretroviral therapy (cART), in the 1990s, treatment has been so successful that in many parts of the world, HIV has become a chronic condition in which progression to AIDS has become increasingly rare. However, while people with HIV can expect to live a normal life span with cART, lifelong medication is required and cardiovascular, renal, liver, and neurologic diseases are still possible, which continues to prompt research for a cure for HIV. Infected reservoir cells, such as CD4+ T cells and myeloid cells, allow persistence of HIV as an integrated DNA provirus and serve as a potential source for the re-emergence of virus. Attempts to eradicate HIV from these cells have focused mainly on the so-called "shock and kill" approach, where cellular reactivation is induced so as to trigger the purging of virus-producing cells by cytolysis or immune attack. This approach has several limitations and its usefulness in clinical applications remains to be assessed. Recent advances in gene-editing technology have allowed the use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells or knocking out HIV receptors. Here, we review this strategy and its potential to eliminate the latent HIV reservoir resulting in a sterile cure of AIDS.
Collapse
|
26
|
Kevadiya BD, Bade AN, Woldstad C, Edagwa BJ, McMillan JM, Sajja BR, Boska MD, Gendelman HE. Development of europium doped core-shell silica cobalt ferrite functionalized nanoparticles for magnetic resonance imaging. Acta Biomater 2017; 49:507-520. [PMID: 27916740 PMCID: PMC5501313 DOI: 10.1016/j.actbio.2016.11.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/03/2016] [Accepted: 11/30/2016] [Indexed: 12/24/2022]
Abstract
The size, shape and chemical composition of europium (Eu3+) cobalt ferrite (CFEu) nanoparticles were optimized for use as a "multimodal imaging nanoprobe" for combined fluorescence and magnetic resonance bioimaging. Doping Eu3+ ions into a CF structure imparts unique bioimaging and magnetic properties to the nanostructure that can be used for real-time screening of targeted nanoformulations for tissue biodistribution assessment. The CFEu nanoparticles (size ∼7.2nm) were prepared by solvothermal techniques and encapsulated into poloxamer 407-coated mesoporous silica (Si-P407) to form superparamagnetic monodisperse Si-CFEu nanoparticles with a size of ∼140nm. Folic acid (FA) nanoparticle decoration (FA-Si-CFEu, size ∼140nm) facilitated monocyte-derived macrophage (MDM) targeting. FA-Si-CFEu MDM uptake and retention was higher than seen with Si-CFEu nanoparticles. The transverse relaxivity of both Si-CFEu and FA-Si-CFEu particles were r2=433.42mM-1s-1 and r2=419.52mM-1s-1 (in saline) and r2=736.57mM-1s-1 and r2=814.41mM-1s-1 (in MDM), respectively. The results were greater than a log order-of-magnitude than what was observed at replicate iron concentrations for ultrasmall superparamagnetic iron oxide (USPIO) particles (r2=31.15mM-1s-1 in saline) and paralleled data sets obtained for T2 magnetic resonance imaging. We now provide a developmental opportunity to employ these novel particles for theranostic drug distribution and efficacy evaluations. STATEMENT OF SIGNIFICANCE A novel europium (Eu3+) doped cobalt ferrite (Si-CFEu) nanoparticle was produced for use as a bioimaging probe. Its notable multifunctional, fluorescence and imaging properties, allows rapid screening of future drug biodistribution. Decoration of the Si-CFEu particles with folic acid increased its sensitivity and specificity for magnetic resonance imaging over a more conventional ultrasmall superparamagnetic iron oxide particles. The future use of these particles in theranostic tests will serve as a platform for designing improved drug delivery strategies to combat inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - Christopher Woldstad
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198-1045, United States
| | - Benson J Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - JoEllyn M McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States
| | - Balasrinivasa R Sajja
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198-1045, United States
| | - Michael D Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198-1045, United States
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, United States.
| |
Collapse
|
27
|
Garcia-Tellez T, Huot N, Ploquin MJ, Rascle P, Jacquelin B, Müller-Trutwin M. Non-human primates in HIV research: Achievements, limits and alternatives. INFECTION GENETICS AND EVOLUTION 2016; 46:324-332. [PMID: 27469027 DOI: 10.1016/j.meegid.2016.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
Abstract
An ideal model for HIV-1 research is still unavailable. However, infection of non-human primates (NHP), such as macaques, with Simian Immunodeficiency Virus (SIV) recapitulates most virological, immunological and clinical hallmarks of HIV infection in humans. It has become the most suitable model to study the mechanisms of transmission and physiopathology of HIV/AIDS. On the other hand, natural hosts of SIV, such as African green monkeys and sooty mangabeys that when infected do not progress to AIDS, represent an excellent model to elucidate the mechanisms involved in the capacity of controlling inflammation and disease progression. The use of NHP-SIV models has indeed enriched our knowledge in the fields of: i) viral transmission and viral reservoirs, ii) early immune responses, iii) host cell-virus interactions in tissues, iv) AIDS pathogenesis, v) virulence factors, vi) prevention and vii) drug development. The possibility to control many variables during experimental SIV infection, together with the resemblance between SIV and HIV infections, make the NHP model the most appropriate, so far, for HIV/AIDS research. Nonetheless, some limitations in using these models have to be considered. Alternative models for HIV/AIDS research, such as humanized mice and recombinant forms of HIV-SIV viruses (SHIV) for NHP infection, have been developed. The improvement of SHIV viruses that mimic even better the natural history of HIV infection and of humanized mice that develop a greater variety of human immune cell lineages, is ongoing. None of these models is perfect, but they allow contributing to the progress in managing or preventing HIV infection.
Collapse
Affiliation(s)
- Thalía Garcia-Tellez
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| | - Mickaël J Ploquin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
28
|
Kishida T, Ejima A, Mazda O. Specific Destruction of HIV Proviral p17 Gene in T Lymphoid Cells Achieved by the Genome Editing Technology. Front Microbiol 2016; 7:1001. [PMID: 27446041 PMCID: PMC4923141 DOI: 10.3389/fmicb.2016.01001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/13/2016] [Indexed: 11/13/2022] Open
Abstract
Recent development in genome editing technologies has enabled site-directed deprivation of a nucleotide sequence in the chromosome in mammalian cells. Human immunodeficiency (HIV) infection causes integration of proviral DNA into the chromosome, which potentially leads to re-emergence of the virus, but conventional treatment cannot delete the proviral DNA sequence from the cells infected with HIV. In the present study, the transcription activator-like effector nucleases (TALENs) specific for the HIV p17 gene were constructed, and their activities to destroy the target sequence were evaluated. SSA assay showed a high activity of a pair of p17-specific TALENs. A human T lymphoid cell line, Jurkat, was infected with a lentivirus vector followed by transfection with the TALEN–HIV by electroporation. The target sequence was destructed in approximately 10–95% of the p17 polymerase chain reaction clones, and the efficiencies depended on the Jurkat–HIV clones. Because p17 plays essential roles for assembly and budding of HIV, and this gene has relatively low nucleotide sequence diversity, genome editing procedures targeting p17 may provide a therapeutic benefit for HIV infection.
Collapse
Affiliation(s)
- Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine Kamikyo, Japan
| | - Akika Ejima
- Department of Immunology, Kyoto Prefectural University of Medicine Kamikyo, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine Kamikyo, Japan
| |
Collapse
|