1
|
Lebedev A, Kim K, Ozhmegova E, Antonova A, Kazennova E, Tumanov A, Kuznetsova A. Rev Protein Diversity in HIV-1 Group M Clades. Viruses 2024; 16:759. [PMID: 38793640 PMCID: PMC11125641 DOI: 10.3390/v16050759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The HIV-1 Rev protein expressed in the early stage of virus replication is involved in the nuclear export of some forms of virus RNA. Naturally occurring polymorphisms in the Rev protein could influence its activity. The association between the genetic features of different virus variants and HIV infection pathogenesis has been discussed for many years. In this study, Rev diversity among HIV-1 group M clades was analyzed to note the signatures that could influence Rev activity and, subsequently, clinical characteristics. From the Los Alamos HIV Sequence Database, 4962 Rev sequences were downloaded and 26 clades in HIV-1 group M were analyzed for amino acid changes, conservation in consensus sequences, and the presence of clade-specific amino acid substitutions (CSSs) and the Wu-Kabat protein variability coefficient (WK). Subtypes G, CRF 02_AG, B, and A1 showed the largest amino acid changes and diversity. The mean conservation of the Rev protein was 80.8%. In consensus sequences, signatures that could influence Rev activity were detected. In 15 out of 26 consensus sequences, an insertion associated with the reduced export activity of the Rev protein, 95QSQGTET96, was identified. A total of 32 CSSs were found in 16 clades, wherein A6 had the 41Q substitution in the functionally significant region of Rev. The high values of WK coefficient in sites 51 and 82, located on the Rev interaction surface, indicate the susceptibility of these positions to evolutionary replacements. Thus, the noted signatures require further investigation.
Collapse
Affiliation(s)
- Aleksey Lebedev
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
- Mechnikov Scientific Research Institute of Vaccines and Serums, 105064 Moscow, Russia
| | - Kristina Kim
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Ekaterina Ozhmegova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Anastasiia Antonova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Elena Kazennova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Aleksandr Tumanov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| | - Anna Kuznetsova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (K.K.); (E.O.); (A.A.); (E.K.); (A.T.)
| |
Collapse
|
2
|
Levintov L, Vashisth H. Structural and computational studies of HIV-1 RNA. RNA Biol 2024; 21:1-32. [PMID: 38100535 PMCID: PMC10730233 DOI: 10.1080/15476286.2023.2289709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| | - Harish Vashisth
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| |
Collapse
|
3
|
Eren E, Watts NR, Randazzo D, Palmer I, Sackett DL, Wingfield PT. Structural basis of microtubule depolymerization by the kinesin-like activity of HIV-1 Rev. Structure 2023; 31:1233-1246.e5. [PMID: 37572662 PMCID: PMC10592302 DOI: 10.1016/j.str.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
HIV-1 Rev is an essential regulatory protein that transports unspliced and partially spliced viral mRNAs from the nucleus to the cytoplasm for the expression of viral structural proteins. During its nucleocytoplasmic shuttling, Rev interacts with several host proteins to use the cellular machinery for the advantage of the virus. Here, we report the 3.5 Å cryo-EM structure of a 4.8 MDa Rev-tubulin ring complex. Our structure shows that Rev's arginine-rich motif (ARM) binds to both the acidic surfaces and the C-terminal tails of α/β-tubulin. The Rev-tubulin interaction is functionally homologous to that of kinesin-13, potently destabilizing microtubules at sub-stoichiometric levels. Expression of Rev in astrocytes and HeLa cells shows that it can modulate the microtubule cytoskeleton within the cellular environment. These results show a previously undefined regulatory role of Rev.
Collapse
Affiliation(s)
- Elif Eren
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Norman R Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ira Palmer
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan L Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Jackson PEH, Holsey J, Turse L, Hammarskjold ML, Rekosh D. Rev-Rev Response Element Activity Selection Bias at the Human Immunodeficiency Virus Transmission Bottleneck. Open Forum Infect Dis 2023; 10:ofad486. [PMID: 37854107 PMCID: PMC10580148 DOI: 10.1093/ofid/ofad486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Background Sexual transmission of human immunodeficiency virus (HIV) is inefficient and results in selection of viral variants based on incompletely understood factors. Functional variation in the Rev-Rev response element (RRE) regulatory axis of HIV affect replication kinetics and relative expression of viral proteins. We explored whether differences in this axis among viral isolates affect transmission fitness. Methods HIV sequences were identified from nine female-to-male transmission pairs. Using a rapid flow cytometric assay, we analyzed Rev-RRE functional activity of primary isolates. Results Rev-RRE activity was significantly lower in recipient viruses compared with corresponding donor viruses. In most transmission events, recipient virus Rev-RRE activity clustered at the extreme low end of the range of donor virus activity. Conclusions These data indicate selection pressure on the Rev-RRE axis during female-to-male sexual transmission. Variation in Rev-RRE activity may permit viral adaptation to different fitness landscapes and could play an important role in HIV pathogenesis.
Collapse
Affiliation(s)
- Patrick E H Jackson
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - Jordan Holsey
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - Lauren Turse
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Jackson PEH, Holsey J, Turse L, Marie-Louise H, Rekosh D. Rev-Rev Response Element Activity Selection Bias at the HIV Transmission Bottleneck. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535732. [PMID: 37066242 PMCID: PMC10104022 DOI: 10.1101/2023.04.05.535732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
HIV is not efficiently transmitted between hosts, and selection of viral variants occurs during the process of sexual transmission. The factors that confer selective advantage at the transmission bottleneck remain incompletely understood. We explored whether differences in the Rev-Rev Response Element (RRE) regulatory axis of HIV affect transmission fitness, since functional variation in the Rev-RRE axis in different viral isolates has been shown to affect replication kinetics and relative expression of many HIV proteins. Single genome HIV sequences were identified from nine linked subject pairs near the time of female-to-male transmission. Using a rapid flow-cytometric assay, we found that the functional Rev-RRE activity varied significantly between isolates. Moreover, it was generally lower in recipients' viruses compared to the corresponding donor viruses. In six of nine transmission events, recipient virus Rev-RRE activity clustered at the extreme low end of the range of donor virus activity. Rev-RRE pair activity was an unpredictable product of component Rev and RRE activity variation. These data indicate selection pressure on the Rev-RRE axis during female-to-male sexual transmission. Variation in the activity of the Rev-RRE axis may permit viral adaptation to different fitness landscapes and could play an important role in HIV pathogenesis.
Collapse
Affiliation(s)
- Patrick E. H. Jackson
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - Jordan Holsey
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - Lauren Turse
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - Hammarskjold Marie-Louise
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Shi Y, Han J, Zhu B, Liu Z, Liang Q, Lan C, Li Z, Li H, Liu Y, Jia L, Li T, Wang X, Li J, Zhang B, Jiang J, Li L. Limited nucleotide changes of HIV-1 subtype B Rev response element in China affect overall Rev-RRE activity and viral replication. Front Microbiol 2022; 13:1044676. [PMID: 36578566 PMCID: PMC9791959 DOI: 10.3389/fmicb.2022.1044676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
The HIV-1 Rev response element (RRE) is a cis-acting RNA element that facilitates the nuclear export of mRNA-containing introns by binding specifically to the Rev protein, enabling a critical step in the viral replication cycle. This study aims to determine the subtype-specific loci of HIV-1 subtype B RRE circulating in China and to analyze their effects on Rev-RRE function and HIV-1 replication. We amplified 71 HIV-1 subtype B RRE full-length sequences from the HIV patients' blood samples collected in China, analyzed the subtype-specific loci on them by comparing them with subtype B in the United States, and predicted their RNA secondary structures. Rev-RRE activity assay was used to test the binding activity of Rev and different RREs. Infectious clones were mutated to test the effect of the subtype-specific loci on replication capacity. In this study, two sites were determined to be the subtype-specific loci of HIV-1 subtype B RRE circulating in China. Both site 186 and site 56-57insAAC can significantly increase the viral mRNA transcription and Rev-RRE activity, but only the site 186 can significantly improve viral replication ability. Collectively, the subtype-specific loci of subtype B RRE circulating in China have a significant effect on the Rev-RRE activity and viral replication. This study investigates the subtype-specific loci of RRE, which are unique to retroviruses and essential for viral replication, and will help to explore the reasons why subtype B circulating in China is more widespread and persistent than American subtype B in China at the genetic level, and will provide theoretical support for the development of more inclusive detection and treatment methods for subtype B circulating in China. At the same time, it will also provide insight into the impact of different subtype HIV-1 genetic characteristics on viral replication.
Collapse
Affiliation(s)
- Yuting Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China,Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo Zhu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhi Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingmiao Liang
- School of Graduate Studies, Guangxi Medical University, Nanning, China
| | - Chunlin Lan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China,Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhengyang Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bohan Zhang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China,Junjun Jiang,
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China,*Correspondence: Lin Li,
| |
Collapse
|
7
|
Wang S, Li H, Lian Z, Deng S. The Role of RNA Modification in HIV-1 Infection. Int J Mol Sci 2022; 23:7571. [PMID: 35886919 PMCID: PMC9317671 DOI: 10.3390/ijms23147571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/25/2023] Open
Abstract
RNA plays an important role in biology, and more than 170 RNA modifications have been identified so far. Post-transcriptional modification of RNA in cells plays a crucial role in the regulation of its stability, transport, processing, and gene expression. So far, the research on RNA modification and the exact role of its enzymes is becoming more and more comprehensive. Human immunodeficiency virus 1 (HIV-1) is an RNA virus and the causative agent of acquired immunodeficiency syndrome (AIDS), which is one of the most devastating viral pandemics in history. More and more studies have shown that HIV has RNA modifications and regulation of its gene expression during infection and replication. This review focuses on several RNA modifications and their regulatory roles as well as the roles that different RNA modifications play during HIV-1 infection, in order to find new approaches for the development of anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Shuqi Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (H.L.)
| | - Huanxiang Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (H.L.)
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (H.L.)
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
8
|
Pasternak AO, Berkhout B. The Splice of Life: Does RNA Processing Have a Role in HIV-1 Persistence? Viruses 2021; 13:v13091751. [PMID: 34578332 PMCID: PMC8471011 DOI: 10.3390/v13091751] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Antiretroviral therapy (ART) suppresses HIV-1 replication but does not eradicate the virus. Persistence of HIV-1 latent reservoirs in ART-treated individuals is considered the main obstacle to achieving an HIV-1 cure. However, these HIV-1 reservoirs are not transcriptionally silent, and viral transcripts can be detected in most ART-treated individuals. HIV-1 latency is regulated at the transcriptional and at multiple post-transcriptional levels. Here, we review recent insights into the possible contribution of viral RNA processing to the persistence of HIV-1 reservoirs, and discuss the clinical implications of persistence of viral RNA species in ART-treated individuals.
Collapse
|