1
|
Silva VBD, Almeida-Bezerra JW, Pereira RLS, Alcântara BMD, Furlan CM, Coelho JJ, Coutinho HDM, Morais-Braga MFB, Oliveira AFMD. Chemical composition, antibacterial potential, and toxicity of the extracts from the stem bark of Hancornia speciosa Gomes (Apocynaceae). JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118631. [PMID: 39067831 DOI: 10.1016/j.jep.2024.118631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hancornia speciosa is a medicinal plant popularly used to treat different medical issues, including infectious diseases. Exploring the therapeutic potentialities of the extracts from medicinal plants combined with conventional antibiotic drugs is a promising horizon, especially considering the rising microbial resistance. AIM OF THE STUDY This study aimed to characterize the chemical composition of the ethereal (EEHS) and methanolic (MEHS) extracts of the stem bark of H. speciosa, and also evaluate their antibacterial and drug-modifying activity, and toxicity. MATERIALS AND METHODS The extracts were characterized by gas chromatography coupled to mass spectrometry (GC-MS). Additionally, total phenol and flavonoid contents were determined. The antibacterial and antibiotic-modifying activity was evaluated against strains of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa using the serial microdilution method, obtaining the minimum inhibitory concentration (MIC). The toxicity assay was carried out using the Drosophila melanogaster model. RESULTS Thirty compounds were identified in the extracts of the stem bark of H. speciosa, with triterpenoids being predominant in both extracts. Additionally, fatty alcohols, carbohydrates, fatty acids, phenolic acids, and phytosterols were identified in both extracts. EEHS and MEHS extracts had considerable phenol contents (346.4 and 340.0 mg GAE/g, respectively). Flavonoids were detected in a lower proportion (7.6 and 6.9 mg QE/g, respectively). H. speciosa extracts did not display intrinsic antibacterial activity against the bacterial strains evaluated, however, they were capable of modifying the activity of gentamicin, erythromycin, and norfloxacin. EEHS increased the efficacy of norfloxacin against E. coli and S. aureus, reducing MIC values by 50%. MEHS potentiated the action of gentamicin against all bacterial strains, especially against E. coli. The extracts did not display toxicity at clinically relevant concentrations against D. melanogaster. CONCLUSION The stem bark of H. speciosa was considered a rich source of bioactive compounds. Our findings evidenced the therapeutic potential of H. speciosa extracts for the development of new pharmaceutical therapeutics against bacteria. Although the extracts did not exhibit intrinsic antibacterial activity, they enhanced the efficacy of commercial antibiotic drugs and were non-toxic at clinically relevant concentrations. Future studies are needed to elucidate the mechanisms of action of these extracts, ensuring their safety and efficacy.
Collapse
Affiliation(s)
- Viviane Bezerra da Silva
- Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Rua Professor Moraes Rego, s/n, Recife, Pernambuco, 50.670-901, Brazil.
| | - José Weverton Almeida-Bezerra
- Departamento de Ciências Biológicas, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Raimundo Luiz Silva Pereira
- Departamento de Ciências Biológicas, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Bruno Melo de Alcântara
- Departamento de Ciências Biológicas, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Cláudia Maria Furlan
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Janerson José Coelho
- Universidade Estadual do Ceará - UECE, Faculdade de Educação, Ciências e Letras dos Inhamuns - CECITEC, Tauá, 63660-000, Ceará, Brazil
| | - Henrique Douglas Melo Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | | | | |
Collapse
|
2
|
Ntshambiwa KT, Seifu E, Mokhawa G. Nutritional composition, bioactive components and antioxidant activity of Moringa stenopetala and Moringa oleifera leaves grown in Gaborone, Botswana. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023. [DOI: 10.1186/s43014-022-00124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractMoringa is a multipurpose tree and an important vegetable crop elsewhere. However, it is recently introduced to Botswana and grown in the backyards of households as a shade. Its uses are generally unknown to the community, and it is underutilized despite its huge nutritional and non-food uses. In this study, the nutritional composition, bioactive components and antioxidant activity of Moringa stenopetala (MS) and Moringa oleifera (MO) leaves grown in Gaborone Botswana were determined. Except for moisture content, no significant difference (p > 0.05) was observed in proximate composition between MS and MO leaves. The moisture content of MS leaves was significantly (p < 0.05) higher than that of MO leaves. MS leaves had significantly (p < 0.05) higher Na and K contents than MO leaves. However, MO leaves had significantly (p < 0.05) higher Zn content than MS leaves. The two Moringa leaves had comparable Fe, Ca and Mg contents. The Vitamin C content of MO leaves was significantly (p < 0.05) higher than that of MS leaves. However, MS leaves had significantly (p < 0.05) higher total phenolic, total flavonoid contents (mg/100 g) and antioxidant activity (µg/mL) as compared to MO leaves. The Moringa leaves can be used for development of functional foods with improved nutrition and health benefits.
Graphical Abstract
Collapse
|
3
|
Chemical Profiles, In Vitro Antioxidant and Antifungal Activity of Four Different Lavandula angustifolia L. EOs. Molecules 2023; 28:molecules28010392. [PMID: 36615586 PMCID: PMC9822278 DOI: 10.3390/molecules28010392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Lavandula angustifolia L., known as lavender, is an economically important Lamiaceae due to the production of essential oils (EOs) for the food, cosmetic, pharmaceutical and medical industries. The purpose of this study was to determine the chemical composition of EOs isolated from four inflorescences of L. angustifolia L. collected in different geographical areas: central-southern Italy (LaCC, LaPE, LaPS) and southern France (LaPRV). The essential oils, obtained by steam distillation from plants at the full flowering stage, were analyzed using gas chromatography coupled with mass spectrometry (GC-MS). More than 70 components identified in each sample showed significant variability among the main constituents. The four EOs analyzed contained the following as main component: linalool (from 30.02% to 39.73%), borneol (13.65% in LaPE and 16.83% in La PS), linalyl acetate (24.34% in LaCC and 31.07% in LaPRV). The EOs were also evaluated for their in vitro antifungal activity against two white rot fungi (Phanerochaete chrysosporium and Trametes cingulata) as potential natural biodeteriogens in the artworks field, and against Sclerotium rolfsii, Botrytis cinerea and Fusarium verticilloides responsible for significant crop yield losses in tropical and subtropical areas. The results confirm a concentration-dependent toxicity pattern, where the fungal species show different sensitivity to the four EOs. The in vitro antioxidant activity by DPPH assay showed better scavenging activity on LaCC (IC50 26.26 mg/mL) and LaPRV (IC50 33.53 mg/mL), followed by LaPE (IC50 48.00 mg/mL) and LaPS (IC50 49.63 mg/mL). The potential application of EOs as a green method to control biodeterioration phenomena on a work of art on wood timber dated 1876 was evaluated.
Collapse
|
4
|
Nicolescu A, Babotă M, Ilea M, Dias MI, Calhelha RC, Gavrilaș L, Rocchetti G, Crișan G, Mocan A, Barros L, Pârvu AE. Potential therapeutic applications of infusions and hydroalcoholic extracts of Romanian glutinous sage ( Salvia glutinosa L.). Front Pharmacol 2022; 13:975800. [PMID: 36059937 PMCID: PMC9437640 DOI: 10.3389/fphar.2022.975800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Ethnopharmacological relevance: Salvia glutinosa, also known as the glutinous sage, has been used in Romanian folk medicine in the treatment of inflammation, injuries, and mild infections. However, there is no direct scientific evidence to demonstrate these activities. Aim of the Study: The present research was based on evaluating antioxidant, antiproliferative, and α-glucosidase inhibitory activity of S. glutinosa extracts, as well as the in vivo anti-inflammatory activity. Materials and Methods: Infusions and 70% (v:v) ethanol solution extracts of S. glutinosa stems and leaves, collected from two different locations in Romania, were prepared. Ten phenolic compounds were identified and quantified using the LC-DAD-ESI/MSn method, and total phenolic and flavonoid content, as well as in vitro antioxidant (DPPH, ABTS, and FRAP assays), antiproliferative, anti-inflammatory and alpha-glucosidase inhibitory activities were determined. A rat model of induced inflammation with turpentine oil was used for the examination of in vivo effects of the extracts, using diclofenac as an anti-inflammatory control. Results: The highest inhibitory α-glucosidase activity was determined to be IC50 = 0.546 mg/ml for the hydroalcoholic extract made with plant material collected on the road to Sighișoara. The highest cytotoxic activity against HepG2 cell line was determined to be GI50 = 131.68 ± 5.03 μg/ml, for the hydroalcoholic extract made with plant material from Sighișoara. In vivo administration of extract (200 mg lyophilized powder/ml) showed a significant reduction of NO production. Conclusion: Our findings indicate that S. glutinosa extracts exhibit antioxidant, α-glucosidase inhibitory activity, as well as a modest cytotoxic effect on HepG2 cell line. By in vivo administration, the extracts show anti-inflammatory and antioxidant activity, which correlates with the traditional use of the species. The environmental conditions seemed to induce important changes in the chemical composition and the bioactivity of the herbal preparations derived from S. glutinosa.
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Ilea
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Laura Gavrilaș
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Afewerky HK, Ayodeji AE, Tiamiyu BB, Orege JI, Okeke ES, Oyejobi AO, Bate PNN, Adeyemi SB. Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:176. [PMID: 34697529 PMCID: PMC8529567 DOI: 10.1186/s42269-021-00635-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Withania somnifera (L.) Dunal (W. somnifera) is a herb commonly known by its English name as Winter Cherry. Africa is indigenous to many medicinal plants and natural products. However, there is inadequate documentation of medicinal plants, including W. somnifera, in Africa. There is, therefore, a need for a comprehensive compilation of research outcomes of this reviewed plant as used in traditional medicine in different regions of Africa. METHODOLOGY Scientific articles and publications were scooped and sourced from high-impact factor journals and filtered with relevant keywords on W. somnifera. Scientific databases, including GBIF, PubMed, NCBI, Google Scholar, Research Gate, Science Direct, SciFinder, and Web of Science, were accessed to identify the most influential articles and recent breakthroughs published on the contexts of ethnography, ethnomedicinal uses, phytochemistry, pharmacology, and commercialization of W. somnifera. RESULTS This critical review covers the W. somnifera ethnography, phytochemistry, and ethnomedicinal usage to demonstrate the use of the plant in Africa and elsewhere to prevent or alleviate several pathophysiological conditions, including cardiovascular, neurodegenerative, reproductive impotence, as well as other chronic diseases. CONCLUSION W. somnifera is reportedly safe for administration in ethnomedicine as several research outcomes confirmed its safety status. The significance of commercializing this plant in Africa for drug development is herein thoroughly covered to provide the much-needed highlights towards its cultivations economic benefit to Africa.
Collapse
Affiliation(s)
- Henok Kessete Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- School of Allied Health Professions, Asmara College of Health Sciences, 00291 Asmara, Eritrea
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
| | - Ayeni Emmanuel Ayodeji
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Pharmacognosy and Drug Development, Ahmadu Bello University Zaria, PMB 1044, Kaduna, 800211 Nigeria
| | - Bashir Bolaji Tiamiyu
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
| | - Joshua Iseoluwa Orege
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Industrial Chemistry, Ekiti State University, PMB 5363, Ado-Ekiti, 362001 Nigeria
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Biochemistry, FBS and Natural Science Unit, SGS, University of Nigeria, Nsukka, 410001 Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Aanuoluwapo Opeyemi Oyejobi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Petuel Ndip Ndip Bate
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Guangzhou Institute of Biomedicine and Health, Guangzhou, 510530 China
| | - Sherif Babatunde Adeyemi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli-Mahuva Road, Bardoli, Surat, Gujarat 394350 India
| |
Collapse
|
6
|
Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020; 25:molecules25204711. [PMID: 33066611 PMCID: PMC7587387 DOI: 10.3390/molecules25204711] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils-natural and liquid secondary plant metabolites-are gaining importance for their use in the protection of foods, since they are accepted as safe and healthy. Although research studies indicate that the antibacterial and antioxidant activities of essential oils (EOs) are more common compared to other biological activities, specific concerns have led scientists to investigate the areas that are still in need of research. To the best of our knowledge, there is no review paper in which antifungal and especially antimycotoxigenic effects are compiled. Further, the low stability of essential oils under environmental conditions such as temperature and light has forced scientists to develop and use recent approaches such as encapsulation, coating, use in edible films, etc. This review provides an overview of the current literature on essential oils mainly on antifungal and antimycotoxigenic but also their antibacterial and antioxidant activities. Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined.
Collapse
|
7
|
Antiaging, Stress Resistance, and Neuroprotective Efficacies of Cleistocalyx nervosum var. paniala Fruit Extracts Using Caenorhabditis elegans Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7024785. [PMID: 31871554 PMCID: PMC6906846 DOI: 10.1155/2019/7024785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Abstract
Plant parts and their bioactive compounds are widely used by mankind for their health benefits. Cleistocalyx nervosum var. paniala is one berry fruit, native to Thailand, known to exhibit various health benefits in vitro. The present study was focused on analyzing the antiaging, stress resistance, and neuroprotective effects of C. nervosum in model system Caenorhabditis elegans using physiological assays, fluorescent imaging, and qPCR analysis. The results suggest that the fruit extract was able to significantly extend the median and maximum lifespan of the nematode. It could also extend the healthspan by reducing the accumulation of the “age pigment” lipofuscin, inside the nematode along with regulating the expression of col-19, egl-8, egl-30, dgk-1, and goa-1 genes. Further, the extracts upregulated the expression of daf-16 while downregulating the expression of daf-2 and age-1 in wild-type nematodes. Interestingly, it could extend the lifespan in DAF-16 mutants suggesting that the extension of lifespan and healthspan was dependent and independent of DAF-16-mediated pathway. The fruit extract was also observed to reduce the level of Reactive Oxygen Species (ROS) inside the nematode during oxidative stress. The qPCR analysis suggests the involvement of skn-1 and sir-2.1 in initiating stress resistance by activating the antioxidant mechanism. Additionally, the fruit could also elicit neuroprotection as it could extend the median and maximum lifespan of transgenic strain integrated with Aβ. SKN-1 could play a pivotal role in establishing the antiaging, stress resistance, and neuroprotective effect of C. nervosum. Overall, C. nervosum can be used as a nutraceutical in the food industry which could offer potential health benefits.
Collapse
|