1
|
Loera-Garcia BV, Leyva-Ramos S, Cardoso-Ortiz J, Noriega S, Romo-Mancillas A, Baines KM, McOnei SL. An Alternative Method for the Selective Synthesis of Ortho-nitro Anilines Using Bismuth Nitrate Pentahydrate. Curr Org Synth 2025; 22:234-242. [PMID: 38415444 DOI: 10.2174/0115701794273947231206111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 10/23/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND Nitroaromatic compounds are important scaffolds used for the synthesis of a variety of compounds, such as explosives, herbicides, dyes, perfumes and pharmaceuticals. Bismuth nitrate pentahydrate is a widely used reagent in organic synthesis; however, its utility as a nitrating agent for anilines is underexplored. OBJECTIVE The aim of this work is to propose and find the proper reaction conditions of an alternative nitrating agent constituted by a mixture of bismuth nitrate / acetic anhydride in DCM with a series of substituted anilines under mild reflux. METHODS Several anilines having both activating and deactivating substituents in the ortho, meta and para positions were the substrate for the nitration reaction. Experimental conditions were performed in "one-pot" conditions before product purification. RESULTS Bi(NO3)3•5H2O demonstrated to be effective and somehow regioselective when it came to the nitration of anilines in the ortho position. Although other products were also identified under these conditions, in most cases, the ortho derivative was the major or even the only product obtained with moderate to high yields in the range of 50% - 96%. CONCLUSION Bi(NO3)3•5H2O is an efficient and safe nitrating agent since the use of concentrated and corrosive acids like sulfuric and nitric is avoided; furthermore, bismuth nitrate is low-priced and no special care nor equipment is required.
Collapse
Affiliation(s)
- Brenda V Loera-Garcia
- Facultad de Ciencias Químicas. Universidad Autónoma de San Luis Potosí. Av. Manuel Nava 6, Zona Universitaria. San Luis Potosí, San Luis Potosí 78210, México
| | - Socorro Leyva-Ramos
- Facultad de Ciencias Químicas. Universidad Autónoma de San Luis Potosí. Av. Manuel Nava 6, Zona Universitaria. San Luis Potosí, San Luis Potosí 78210, México
| | - Jaime Cardoso-Ortiz
- Unidad Académica de Ciencias Químicas. Universidad Autónoma de Zacatecas. Carretera Zacatecas-Guadalajara Km 6, Ejido la Escondida S/N. Zacatecas, Zacatecas, 98160, México
| | - Saul Noriega
- Unidad Académica de Ciencias Químicas. Universidad Autónoma de Zacatecas. Carretera Zacatecas-Guadalajara Km 6, Ejido la Escondida S/N. Zacatecas, Zacatecas, 98160, México
| | - Antonio Romo-Mancillas
- Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N, Querétaro 76010, México
| | - Kim M Baines
- Department of Chemistry. University of Western Ontario, 1151 Richmont St., London, Ontario, N6A 5B7, Canada
| | - Sarah L McOnei
- Department of Chemistry. University of Western Ontario, 1151 Richmont St., London, Ontario, N6A 5B7, Canada
| |
Collapse
|
2
|
Buravchenko GI, Scherbakov AM, Krymov SK, Salnikova DI, Zatonsky GV, Schols D, Vullo D, Supuran CT, Shchekotikhin AE. Synthesis and evaluation of sulfonamide derivatives of quinoxaline 1,4-dioxides as carbonic anhydrase inhibitors. RSC Adv 2024; 14:23257-23272. [PMID: 39045402 PMCID: PMC11265520 DOI: 10.1039/d4ra04548c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
A series of sulfonamide-derived quinoxaline 1,4-dioxides were synthesized and evaluated as inhibitors of carbonic anhydrases (CA) with antiproliferative potency. Overall, the synthesized compounds demonstrated good inhibitory activity against four CA isoforms. Compound 7g exhibited favorable potency in inhibiting a CA IX isozyme with a K i value of 42.2 nM compared to the reference AAZ (K i = 25.7 nM). Nevertheless, most of the synthesized compounds have their highest activity against CA I and CA II isoforms over CA IX and CA XII. A molecular modeling study was used for an estimation of the binding mode of the selected ligand 7g in the active site of CA IX. The most active compounds (7b, 7f, 7h, and 18) exhibited significant antiproliferative activity against MCF-7, Capan-1, DND-41, HL60, and Z138 cell lines, with IC50 values in low micromolar concentrations. Moreover, derivatives 7a, 7e, and 8g showed similar hypoxic cytotoxic activity and selectivity compared to tirapazamine (TPZ) against adenocarcinoma cells MCF-7. The structure-activity relationships analysis revealed that the presence of a halogen atom or a sulfonamide group as substituents in the phenyl ring of quinoxaline-2-carbonitrile 1,4-dioxides was favorable for overall cytotoxicity against most of the tested cancer cell lines. Additionally, the presence of a carbonitrile fragment in position 2 of the heterocycle also had a positive effect on the antitumor properties of such derivatives against the majority of cell lines. The most potent derivative, 3-trifluoromethylquinoxaline 1,4-dioxide 7h, demonstrated higher or close antiproliferative activity compared to the reference agents, such as doxorubicin, and etoposide, with an IC50 range of 1.3-2.1 μM. Analysis of the obtained results revealed important patterns in the structure-activity relationship. Moreover, these findings highlight the potential of selected lead sulfonamides on the quinoxaline 1,4-dioxide scaffold for further in-depth evaluation and development of chemotherapeutic agents targeting carbonic anhydrases.
Collapse
Affiliation(s)
- Galina I Buravchenko
- Gause Institute of New Antibiotics 11 B. Pirogovskaya Street Moscow 119021 Russia
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, Blokhin N.N. National Medical Research Center of Oncology Kashirskoe sh. 24 115522 Moscow Russia
| | - Stepan K Krymov
- Gause Institute of New Antibiotics 11 B. Pirogovskaya Street Moscow 119021 Russia
| | - Diana I Salnikova
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, Blokhin N.N. National Medical Research Center of Oncology Kashirskoe sh. 24 115522 Moscow Russia
| | - George V Zatonsky
- Gause Institute of New Antibiotics 11 B. Pirogovskaya Street Moscow 119021 Russia
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven 3000 Leuven Belgium
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence Florence Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence Florence Italy
| | | |
Collapse
|
3
|
Buravchenko GI, Shchekotikhin AE. Quinoxaline 1,4-Dioxides: Advances in Chemistry and Chemotherapeutic Drug Development. Pharmaceuticals (Basel) 2023; 16:1174. [PMID: 37631089 PMCID: PMC10459860 DOI: 10.3390/ph16081174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
N-Oxides of heterocyclic compounds are the focus of medical chemistry due to their diverse biological properties. The high reactivity and tendency to undergo various rearrangements have piqued the interest of synthetic chemists in heterocycles with N-oxide fragments. Quinoxaline 1,4-dioxides are an example of an important class of heterocyclic N-oxides, whose wide range of biological activity determines the prospects of their practical use in the development of drugs of various pharmaceutical groups. Derivatives from this series have found application in the clinic as antibacterial drugs and are used in agriculture. Quinoxaline 1,4-dioxides present a promising class for the development of new drugs targeting bacterial infections, oncological diseases, malaria, trypanosomiasis, leishmaniasis, and amoebiasis. The review considers the most important methods for the synthesis and key directions in the chemical modification of quinoxaline 1,4-dioxide derivatives, analyzes their biological properties, and evaluates the prospects for the practical application of the most interesting compounds.
Collapse
|
4
|
Buravchenko GI, Maslov DA, Alam MS, Grammatikova NE, Frolova SG, Vatlin AA, Tian X, Ivanov IV, Bekker OB, Kryakvin MA, Dontsova OA, Danilenko VN, Zhang T, Shchekotikhin AE. Synthesis and Characterization of Novel 2-Acyl-3-trifluoromethylquinoxaline 1,4-Dioxides as Potential Antimicrobial Agents. Pharmaceuticals (Basel) 2022; 15:155. [PMID: 35215268 PMCID: PMC8877263 DOI: 10.3390/ph15020155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/25/2023] Open
Abstract
The emergence of drug resistance in pathogens leads to a loss of effectiveness of antimicrobials and complicates the treatment of bacterial infections. Quinoxaline 1,4-dioxides represent a prospective scaffold for search of new compounds with improved chemotherapeutic characteristics. Novel 2-acyl-3-trifluoromethylquinoxaline 1,4-dioxides with alteration of substituents at position 2 and 6 were synthesized via nucleophilic substitution with piperazine moiety and evaluated against a broad panel of bacteria and fungi by measuring their minimal inhibitory concentrations. Their mode of action was assessed by whole-genomic sequencing of spontaneous drug-resistant Mycobacterium smegmatis mutants, followed by comparative genomic analysis, and on an original pDualrep2 system. Most of the 2-acyl-3-trifluoromethylquinoxaline 1,4-dioxides showed high antibacterial properties against Gram-positive strains, including mycobacteria, and the introduction of a halogen atom in the position 6 of the quinoxaline ring further increased their activity, with 13c being the most active compound. The mode of action studies confirmed the DNA-damaging nature of the obtained quinoxaline 1,4-dioxides, while drug-resistance may be provided by mutations in redox homeostasis genes, encoding enzymes potentially involved in the activation of the compounds. This study extends views about the antimicrobial and antifungal activities of the quinoxaline 1,4-dioxides and can potentially lead to the discovery of new antibacterial drugs.
Collapse
Affiliation(s)
- Galina I. Buravchenko
- Gause Institute of New Antibiotics, 119021 Moscow, Russia; (G.I.B.); (N.E.G.); (I.V.I.)
| | - Dmitry A. Maslov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (D.A.M.); (S.G.F.); (A.A.V.); (O.B.B.); (V.N.D.)
| | - Md Shah Alam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (M.S.A.); (X.T.); (T.Z.)
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Svetlana G. Frolova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (D.A.M.); (S.G.F.); (A.A.V.); (O.B.B.); (V.N.D.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Aleksey A. Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (D.A.M.); (S.G.F.); (A.A.V.); (O.B.B.); (V.N.D.)
- Institute of Ecology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (M.S.A.); (X.T.); (T.Z.)
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ivan V. Ivanov
- Gause Institute of New Antibiotics, 119021 Moscow, Russia; (G.I.B.); (N.E.G.); (I.V.I.)
- Organic Chemistry Department, Faculty of Natural Sciences, Mendeleyev University of Chemical Technology, 9 Miusskaya Square, 125190 Moscow, Russia
| | - Olga B. Bekker
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (D.A.M.); (S.G.F.); (A.A.V.); (O.B.B.); (V.N.D.)
| | - Maxim A. Kryakvin
- Chemistry Department, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.A.K.); (O.A.D.)
| | - Olga A. Dontsova
- Chemistry Department, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.A.K.); (O.A.D.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143028 Skolkovo, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Valery N. Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (D.A.M.); (S.G.F.); (A.A.V.); (O.B.B.); (V.N.D.)
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (M.S.A.); (X.T.); (T.Z.)
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
5
|
Tang X, Zhou Q, Zhan W, Hu D, Zhou R, Sun N, Chen S, Wu W, Xue W. Synthesis of novel antibacterial and antifungal quinoxaline derivatives. RSC Adv 2022; 12:2399-2407. [PMID: 35425241 PMCID: PMC8979181 DOI: 10.1039/d1ra07559d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
A series of quinoxaline derivatives were designed, synthesized and evaluated as antimicrobial agents against plant pathogenic bacteria and fungi. Some of these compounds exhibited significant antibacterial and antifungal activities in vitro. Compound 5k displayed good antibacterial activity against Acidovorax citrulli (Ac). Compounds 5j and 5t exhibited the most potent anti-RS (Rhizoctonia solani) activity, with the corresponding EC50 values of 8.54 and 12.01 μg mL-1, respectively, which are superior to that of the commercial azoxystrobin (26.17 μg mL-1). Further, the scanning electron microscopy results proved that compound 5j had certain effects on the cell morphology of RS. Moreover, an in vivo bioassay also demonstrated that the anti-RS activity of compound 5j could effectively control rice sheath blight. These results indicate that quinoxaline derivatives could be promising agricultural bactericides and fungicides.
Collapse
Affiliation(s)
- Xuemei Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Qing Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Wenliang Zhan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Die Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Ran Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Nan Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Shuai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University Guiyang 550003 P. R. China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Guiyang 550025 P. R. China +86-851-88292090 +86-851-88292090
| |
Collapse
|