1
|
Jayasudha P, Manivannan R, Son YA. Design and optimization of encapsulated sensor materials with diverse binding sites for efficient cyanide ion detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125512. [PMID: 39622120 DOI: 10.1016/j.saa.2024.125512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/29/2025]
Abstract
Developing colorimetric and fluorimetric sensors with a new design strategy incorporates the same electron donor and acceptor units by changing the binding site by expecting different mechanisms. The sensors YS and RS have the D-π-A concept, having phenothiazine as an electron donor and benzothiazole as an electron acceptor for sensing cyanide ions in various spectral techniques. Both the sensors showed an efficient color change with cyanide ion in day light and UV light, which was confirmed by UV-vis and Fluorescence spectral analysis. The mechanism of sensing cyanide ion by the sensor YS via hydrogen bond formation followed by deprotonation and RS via nucleophilic addition reaction was confirmed with a 1H NMR, FT-IR and HRMS spectral studies. The detection limit was found to be 1.36 μM and 0.78 μM by UV-vis, 0.13 nM and 0.39 nM by fluorescence technique are for sensors YS and RS, which are significantly lower than the WHO criterion of 1.9 μM for cyanide ions in water used for drinking. Furthermore, the real-world application showed that the sensors could quantitatively identify the quantity of cyanide ion present in different types of water samples. Besides, the fabricated test strips make the sensors easy to utilize for detecting CN- in the field without the need for complicated devices. Also, the developed sensor-encapsulated Polysulfone (PSF) capsule kit effectively senses cyanide ion in water.
Collapse
Affiliation(s)
- Palanisamy Jayasudha
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Ramalingam Manivannan
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Young-A Son
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea.
| |
Collapse
|
2
|
Ngoc Mai TT, Minh PN, Phat NT, Duong TH, Minh An TN, Dang VS, Van Hue N, Tri MD. Antimicrobial and alpha-glucosidase inhibitory flavonoid glycosides from the plant Mussaenda recurvata: in vitro and in silico approaches. RSC Adv 2024; 14:9326-9338. [PMID: 38505391 PMCID: PMC10950057 DOI: 10.1039/d4ra00666f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
Seven flavonoid glycosides were isolated from the aerial portions of Mussaenda recurvata during a phytochemical analysis. This comprised one novel component, ecurvoside, and six well-studied compounds, namely astragalin, isoquercitrin, nicotiflorin, rutin, hesperidin, and neohesperidin. The chemical structures of compounds were identified using spectroscopic techniques and a comparison with previously published studies. Alpha-glucosidase inhibition testing was carried out on all isolated compounds. The compounds evaluated have IC50 values between 35.6 and 239.1 g mL-1, indicating a moderate degree of inhibition. In vitro antimicrobial activities of compounds 1-7 have screened against the bacteria Pseudomonas aeruginosa (P. aeruginosa), methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus faecalis (Strep. faecalis), and fungi: Candida albicans (C. albicans), Trichophyton mentagrophytes (T. mentagrophytes), and Microsporum gypseum (M. gypseum), where compound 6 showed excellent activity against fungi T. mentagrophytes with an MIC value of 12.5 μM. In accordance with the molecular docking study, ecurvoside (1) or pose 472 interacted well with the 3TOP enzyme: PDB and the molecular dynamic simulations proved that the complex of ecurvoside and 3TOP has a stable simulation time of 50-100 ns and the significant residual amino acids in 3TOP are relative to interactions more than one time such as Asp 960, Glu 961, Lys 1088, Glu 1095, Arg 1097, Gly 1102, Thr 1103, Gln 1109, Glu 1178: A chain and Glu 1095, Thr 1101, and Asp 1107: B chain. The docking studies of compounds 1-7 to the enzyme 2VF5 explain the general mechanism to inhibit bacteria and proved that compound 6 (pose 370) inhibited stronger than compound 7 (pose 362) and compound 5 (pose 280), and compounds 1 to 4 do not interact well with 2VF5.
Collapse
Affiliation(s)
- Tran Thi Ngoc Mai
- Institute of Applied Sciences, HUTECH University 475A Dien Bien Phu Street, Ward 25, Binh Thanh District Ho Chi Minh City Vietnam
| | - Phan Nhat Minh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, Thanh Loc Ward, District 12 Ho Chi Minh City Vietnam
| | - Nguyen Tan Phat
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, Thanh Loc Ward, District 12 Ho Chi Minh City Vietnam
| | - Thuc Huy Duong
- Department of Chemistry, Ho Chi Minh City University of Education 280 An Duong Vuong Street, District 5 748342 Ho Chi Minh City Vietnam
| | - Tran Nguyen Minh An
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 71420 Vietnam
| | - Van Son Dang
- Institute of Applied Sciences, HUTECH University 475A Dien Bien Phu Street, Ward 25, Binh Thanh District Ho Chi Minh City Vietnam
- Institute of Tropical Biology, Vietnam Academy of Science and Technology 85 Tran Quoc Toan Street, District 3 Ho Chi Minh City 700000 Vietnam
| | - Nguyen Van Hue
- University of Agriculture and Forestry, Hue University 52000 Vietnam
| | - Mai Dinh Tri
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, Thanh Loc Ward, District 12 Ho Chi Minh City Vietnam
| |
Collapse
|
3
|
Tri MD, Phat NT, Minh PN, Chi MT, Hao BX, Minh An TN, Alam M, Van Kieu N, Dang VS, Mai TTN, Duong TH. In vitro anti-inflammatory, in silico molecular docking and molecular dynamics simulation of oleanane-type triterpenes from aerial parts of Mussaenda recurvata. RSC Adv 2023; 13:5324-5336. [PMID: 36793303 PMCID: PMC9923456 DOI: 10.1039/d2ra06870b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Bioactive-guided investigation of the aerial parts of Mussaenda recurvata Naiki, Tagane, and Yahara (Rubiaceae) led to the isolation of four triterpenes, including two new triterpenes recurvatanes A and B (1 and 2), along with two known compounds 3β,6β,23-trihydroxyolean-12-en-28-oic acid (3) and 3β,6β,19α,23-tetrahydroxyolean-12-en-28-oic acid (4). The chemical structures of the compounds were identified from spectroscopic data and by comparison with the literature. A comprehensive review of NMR data of the oleanane-type triterpenes bearing 3-hydroxy and 4-hydroxymethylene groups indicated the characteristic spectroscopic features in this series. Compounds 1-4 were evaluated for the inhibitory NO production in LPS-stimulated RAW264.7 cells. Compounds 2 and 3 showed a moderate reduction of nitrite accumulation with IC50 values of 55.63 ± 2.52 and 60.08 ± 3.17 μM, respectively. Molecular docking model dedicated to compound 3 or pose 420, which is the best candidate among docking poses of compounds 1-4 interacted well with the crystal structure of enzyme 4WCU: PDB. The best ligand molecule, pose 420 in terms of binding energy obtained from docking studies on molecular dynamics (MD) simulations for 100 ns exhibited non-bonding interactions with the protein and remained stable inside the active site.
Collapse
Affiliation(s)
- Mai Dinh Tri
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Ha noi Vietnam .,Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, Thanh Loc ward, District 12 Ho Chi Minh City Vietnam
| | - Nguyen Tan Phat
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Ha noi Vietnam .,Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, Thanh Loc ward, District 12 Ho Chi Minh City Vietnam
| | - Phan Nhat Minh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Ha noi Vietnam .,Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, Thanh Loc ward, District 12 Ho Chi Minh City Vietnam
| | - Mai Thanh Chi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Ha noi Vietnam .,Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29 Street, Thanh Loc ward, District 12 Ho Chi Minh City Vietnam
| | - Bui Xuan Hao
- Department of Chemistry, Ho Chi Minh City University of Education 280 An Duong Vuong Street, District 5 748342 Ho Chi Minh City Vietnam
| | - Tran Nguyen Minh An
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 71420 Vietnam
| | - Mahboob Alam
- Department of Safety Engineering, Dongguk University123 Dongdae-roGyeongju-si 780714Gyeongsangbuk-doRepublic of Korea
| | - Nguyen Van Kieu
- Institute of Fundamental and Applied Sciences, Duy Tan UniversityHo Chi Minh City700000Vietnam,Faculty of Natural Sciences, Duy Tan UniversityDa Nang550000Vietnam
| | - Van-Son Dang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Ha noi Vietnam .,Institute of Tropical Biology, Vietnam Academy of Science and Technology 85 Tran Quoc Toan Street, District 3 Ho Chi Minh City 700000 Vietnam
| | - Tran Thi Ngoc Mai
- Institute of Applied Sciences, HUTECH University475A Dien Bien phu Street, Ward 25, Binh Thanh DistrictHo Chi Minh CityVietnam
| | - Thuc-Huy Duong
- Department of Chemistry, Ho Chi Minh City University of Education 280 An Duong Vuong Street, District 5 748342 Ho Chi Minh City Vietnam
| |
Collapse
|
4
|
Grewe B, Vogt C, Horstkötter T, Tippler B, Xiao H, Müller B, Überla K, Wagner R, Asbach B, Bohne J. The HIV 5' Gag Region Displays a Specific Nucleotide Bias Regulating Viral Splicing and Infectivity. Viruses 2021; 13:v13060997. [PMID: 34071819 PMCID: PMC8227319 DOI: 10.3390/v13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing and the expression of intron-containing mRNAs is one hallmark of HIV gene expression. To facilitate the otherwise hampered nuclear export of non-fully processed mRNAs, HIV encodes the Rev protein, which recognizes its intronic response element and fuels the HIV RNAs into the CRM-1-dependent nuclear protein export pathway. Both alternative splicing and Rev-dependency are regulated by the primary HIV RNA sequence. Here, we show that these processes are extremely sensitive to sequence alterations in the 5’coding region of the HIV genomic RNA. Increasing the GC content by insertion of either GFP or silent mutations activates a cryptic splice donor site in gag, entirely deregulates the viral splicing pattern, and lowers infectivity. Interestingly, an adaptation of the inserted GFP sequence toward an HIV-like nucleotide bias reversed these phenotypes completely. Of note, the adaptation yielded completely different primary sequences although encoding the same amino acids. Thus, the phenotypes solely depend on the nucleotide composition of the two GFP versions. This is a strong indication of an HIV-specific mRNP code in the 5′ gag region wherein the primary RNA sequence bias creates motifs for RNA-binding proteins and controls the fate of the HIV-RNA in terms of viral gene expression and infectivity.
Collapse
Affiliation(s)
- Bastian Grewe
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
| | - Carolin Vogt
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (C.V.); (T.H.)
| | - Theresa Horstkötter
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (C.V.); (T.H.)
| | - Bettina Tippler
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
- Department of Biochemistry, Ruhr-University, 44780 Bochum, Germany
| | - Han Xiao
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
- Institute of Clinical and Molecular Virology, University Clinics Erlangen, 91054 Erlangen, Germany
| | - Bianca Müller
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University, 44801 Bochum, Germany; (B.G.); (B.T.); (H.X.); (B.M.); (K.Ü.)
- Institute of Clinical and Molecular Virology, University Clinics Erlangen, 91054 Erlangen, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University Regensburg, 93053 Regensburg, Germany; (R.W.); (B.A.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University Regensburg, 93053 Regensburg, Germany; (R.W.); (B.A.)
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; (C.V.); (T.H.)
- Correspondence: ; Tel.: +49-511-532-4308
| |
Collapse
|