1
|
Chronic disturbance in the thalamus following cranial irradiation to the developing mouse brain. Sci Rep 2019; 9:9588. [PMID: 31270437 PMCID: PMC6610082 DOI: 10.1038/s41598-019-45973-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Better survival rates among pediatric brain tumor patients have resulted in an increased awareness of late side effects that commonly appear following cancer treatment. Radiation-induced changes in hippocampus and white matter are well described, but do not explain the full range of neurological late effects in childhood cancer survivors. The aim of this study was to investigate thalamus following cranial irradiation (CIR) to the developing brain. At postnatal day 14, male mice pups received a single dose of 8 Gy CIR. Cellular effects in thalamus were assessed using immunohistochemistry 4 months after CIR. Interestingly, the density of neurons decreased with 35% (p = 0.0431) and the density of astrocytes increased with 44% (p = 0.011). To investigate thalamic astrocytes, S100β+ cells were isolated by fluorescence-activated cell sorting and genetically profiled using next-generation sequencing. The phenotypical characterization indicated a disrupted function, such as downregulated microtubules’ function, higher metabolic activity, immature phenotype and degraded ECM. The current study provides novel insight into that thalamus, just like hippocampus and white matter, is severely affected by CIR. This knowledge is of importance to understand the late effects seen in pediatric brain tumor survivors and can be used to give them the best suitable care.
Collapse
|
2
|
Boström M, Kalm M, Eriksson Y, Bull C, Ståhlberg A, Björk-Eriksson T, Hellström Erkenstam N, Blomgren K. A role for endothelial cells in radiation-induced inflammation. Int J Radiat Biol 2018; 94:259-271. [PMID: 29359989 DOI: 10.1080/09553002.2018.1431699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE To unravel the role of the vasculature in radiation-induced brain tissue damage. MATERIALS AND METHODS Postnatal day 14 mice received a single dose of 10 Gy cranial irradiation and were sacrificed 6 h, 24 h or 7 days post-irradiation. Endothelial cells were isolated from the hippocampus and cerebellum using fluorescence-activated cell sorting, followed by cell cycle analysis and gene expression profiling. RESULTS Flow cytometric analysis revealed that irradiation increased the percentage of endothelial cells, relative to the whole cell population in both the hippocampus and the cerebellum. This change in cell distribution indicates that other cell types are more susceptible to irradiation-induced cell death, compared to endothelial cells. This was supported by data showing that genes involved in endothelial cell-specific apoptosis (e.g. Smpd1) were not induced at any time point investigated but that genes involved in cell-cycle arrest (e.g. Cdkn1a) were upregulated at all investigated time points, indicating endothelial cell repair. Inflammation-related genes, on the other hand, were strongly induced, such as Ccl2, Ccl11 and Il6. CONCLUSIONS We conclude that endothelial cells are relatively resistant to ionizing radiation but that they play an active, hitherto unknown, role in the inflammatory response after irradiation. In the current study, this was shown in both the hippocampus, where neurogenesis and extensive cell death after irradiation occurs, and in the cerebellum, where neurogenesis no longer occurs at this developmental age.
Collapse
Affiliation(s)
- Martina Boström
- a Center for Brain Repair and Rehabilitation , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden.,b Department of Oncology , Institute of Clinical Sciences, University of Gothenburg , Gothenburg , Sweden.,c Department of Pharmacology , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden
| | - Marie Kalm
- a Center for Brain Repair and Rehabilitation , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden.,c Department of Pharmacology , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden
| | - Yohanna Eriksson
- c Department of Pharmacology , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden
| | - Cecilia Bull
- b Department of Oncology , Institute of Clinical Sciences, University of Gothenburg , Gothenburg , Sweden
| | - Anders Ståhlberg
- d Department of Pathology and Genetics , Sahlgrenska Cancer Centre, Institute of Biomedicine, University of Gothenburg , Gothenburg , Sweden
| | - Thomas Björk-Eriksson
- b Department of Oncology , Institute of Clinical Sciences, University of Gothenburg , Gothenburg , Sweden
| | - Nina Hellström Erkenstam
- a Center for Brain Repair and Rehabilitation , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden
| | - Klas Blomgren
- a Center for Brain Repair and Rehabilitation , Institute of Neuroscience and Physiology, University of Gothenburg , Gothenburg , Sweden.,e Department of Pediatric Oncology , Karolinska University Hospital , Stockholm , Sweden.,f Department of Women's and Children's Health , Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
3
|
Hellström NA, Lindberg OR, Ståhlberg A, Swanpalmer J, Pekny M, Blomgren K, Kuhn HG. Unique gene expression patterns indicate microglial contribution to neural stem cell recovery following irradiation. Mol Cell Neurosci 2011; 46:710-9. [DOI: 10.1016/j.mcn.2011.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 01/07/2011] [Accepted: 02/01/2011] [Indexed: 12/15/2022] Open
|