1
|
da S M Forezi L, Lima CGS, Amaral AAP, Ferreira PG, de Souza MCBV, Cunha AC, de C da Silva F, Ferreira VF. Bioactive 1,2,3-Triazoles: An Account on their Synthesis, Structural Diversity and Biological Applications. CHEM REC 2021; 21:2782-2807. [PMID: 33570242 DOI: 10.1002/tcr.202000185] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
The triazole heterocycle is a privileged scaffold in medicinal chemistry, since its structure is present in a large number of biologically active molecules, including several drugs currently in the market. Due to their vast applications, a wide variety of methods are described for their preparation, such as the 1,3-dipolar cycloaddition and processes involving diazo compounds and diazo transfer reactions. Considering the significant number of contributions from our research group to this chemistry in recent decades, in this account we discuss both the development of new methods for the synthesis of 1,2,3-triazoles and the preparation of new triazole-functionalized biologically active molecules using classical approaches.
Collapse
Affiliation(s)
- Luana da S M Forezi
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Carolina G S Lima
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Adriane A P Amaral
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Patricia G Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, R. Dr. Mario Vianna, 523 - Santa Rosa, 24241-000, Niterói, RJ, Brazil
| | - Maria Cecília B V de Souza
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Anna C Cunha
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Fernando de C da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-150, Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, R. Dr. Mario Vianna, 523 - Santa Rosa, 24241-000, Niterói, RJ, Brazil
| |
Collapse
|
2
|
Triazole derivatives and their antiplasmodial and antimalarial activities. Eur J Med Chem 2019; 166:206-223. [PMID: 30711831 DOI: 10.1016/j.ejmech.2019.01.047] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 01/23/2023]
Abstract
Malaria, caused by protozoan parasites of the genus Plasmodium especially by the most prevalent parasite Plasmodium falciparum, represents one of the most devastating and common infectious disease globally. Nearly half of the world population is under the risk of being infected, and more than 200 million new clinical cases with around half a million deaths occur annually. Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance, so it's imperative to develop new antimalarials with great potency against both drug-susceptible and drug-resistant malaria. Triazoles, bearing a five-membered heterocyclic ring with three nitrogen atoms, exhibit promising in vitro antiplasmodial and in vivo antimalarial activities. Moreover, several triazole-based drugs have already used in clinics for the treatment of various diseases, demonstrating the excellent pharmaceutical profiles. Therefore, triazole derivatives have the potential for clinical deployment in the control and eradication of malaria. This review covers the recent advances of triazole derivatives especially triazole hybrids as potential antimalarials. The structure-activity relationship is also discussed to provide an insight for rational designs of more efficient antimalarial candidates.
Collapse
|