1
|
Dutta D, Pajaniradje S, Nair AS, Chandramohan S, Bhat SA, Manikandan E, Rajagopalan R. An in-vitro study of active targeting & anti-cancer effect of folic acid conjugated chitosan encapsulated indole curcumin analogue nanoparticles. Int J Biol Macromol 2024; 282:136990. [PMID: 39505180 DOI: 10.1016/j.ijbiomac.2024.136990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
Natural compounds like Curcumin with anti-cancer, anti-inflammatory and anti-bacterial properties are good target for drug development but its poor aqueous solubility, bioavailability, and low retention properties makes it a poor drug candidate in clinical settings. Here in this study, we have used an indole curcumin analogue (ICA) that has better bioavailability and enhanced permeability and retention (EPR) effect than curcumin. To make an active targeting drug we have designed folic acid conjugated chitosan-based nanoparticles encapsulating Indole curcumin analogue (CS-FA-ICA-np). The physical characteristics of CS-FA-ICA-np were evaluated by DLS, SEM, FTIR, XPS, XRD and TGA. Anti-cancer activity was analyzed using MTT, Fluorescence staining, Flow cytometry, comet assay, DNA fragmentation assay, wound healing, gelatin zymography, chick chorioallantoic membrane (CAM) assay and hemolysis assay. The size of CS-FA-ICA-nps were found to be 111 nm, and spherical in shape as observed in SEM. In-vitro assays show that CS-FA-ICA np has IC50 of 90 μg/mL in MDA-MB-231, increases ROS concentration, arrests cell cycle in G2-M phase, reduces matrix metalloproteinase-9 (MMP-9) activity and initiates apoptosis in cancer cells. Our results indicate that encapsulation of ICA increases its anti-cancer effect, drug stability, enhanced drug delivery to cancer microenvironment.
Collapse
Affiliation(s)
- Dipranil Dutta
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Anjali Suresh Nair
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Sathyapriya Chandramohan
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India
| | - E Manikandan
- Centre for Nano Sciences and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University, Puducherry 605014, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Science, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
2
|
Bharathiraja P, Yadav P, Sajid A, Ambudkar SV, Prasad NR. Natural medicinal compounds target signal transduction pathways to overcome ABC drug efflux transporter-mediated multidrug resistance in cancer. Drug Resist Updat 2023; 71:101004. [PMID: 37660590 PMCID: PMC10840887 DOI: 10.1016/j.drup.2023.101004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
ATP-binding cassette (ABC) transporters such as ABCB1, ABCG2, and ABCC1 are the major players in drug efflux-mediated multidrug resistance (MDR), which severely affects the efficacy of chemotherapy. Several synthetic compounds block the drug transport by ABC transporters; however, they exhibit a narrow therapeutic window, and produce side effects in non-target normal tissues. Conversely, the downregulation of the expression of ABC drug transporters seems to be a promising strategy to reverse MDR in cancer cells. Several signaling pathways, such as NF-κB, STAT3, Gli, NICD, YAP/TAZ, and Nrf2 upregulate the expression of ABC drug transporters in drug-resistant cancers. Recently, natural medicinal compounds have gained importance to overcome the ABC drug-efflux pump-mediated MDR in cancer. These compounds target transcription factors and the associated signal transduction pathways, thereby downregulating the expression of ABC transporters in drug-resistant cancer cells. Several potent natural compounds have been identified as lead candidates to synergistically enhance chemotherapeutic efficacy, and a few of them are already in clinical trials. Therefore, modulation of signal transduction pathways using natural medicinal compounds for the reversal of ABC drug transporter-mediated MDR in cancer is a novel approach for improving the efficiency of the existing chemotherapeutics. In this review, we discuss the modulatory role of natural medicinal compounds on cellular signaling pathways that regulate the expression of ABC transporters in drug-resistant cancer cells.
Collapse
Affiliation(s)
- Pradhapsingh Bharathiraja
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Priya Yadav
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-4256, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-4256, USA.
| | - N Rajendra Prasad
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India.
| |
Collapse
|
3
|
Niu X, Shi Y, Li Q, Chen H, Fan X, Yu Y, Lv C, Lu J. Ginsenoside Rb 1 for overcoming cisplatin-insensitivity of A549/DDP cells in vitro and vivo through the dual-inhibition on two efflux pumps of ABCB1 and PTCH1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154776. [PMID: 37087793 DOI: 10.1016/j.phymed.2023.154776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The multi-drug resistance is an inherent weakness in the chemotherapeutics of non-small cell lung cancer occurring frequently all over the world. Clinically, ginseng and Chinese medicinal prescriptions including ginseng usually used as anti-tumor adjuncts due to its characteristic of qi-invigorating, which could improve the curative effect of chemotherapy drugs and reduce their toxic side effects. Triterpenoid saponins are the crucial active ingredients in Panax ginseng, and Ginsenoside Rb1 is of the highest quantities. However, the research on the tumor drug-resistance reversal effect and mechanism of ginsenoside Rb1 is still not clear. PURPOSE This study aimed to systematically estimate the reversal activity of Ginsenoside Rb1 on cisplatin-insensitivity of A549/DDP cells and to reveal its prospective molecular mechanism. METHODS MTT assay were conducted to evaluate the reversal activity on cisplatin-insensitivity of A549/DDP cells of Ginsenoside Rb1in vitro, and the behavior was also studied by establishing a subcutaneous transplanted tumor model of A549/DDP in BALB/c-nu mice. In addition, P-gp ATPase activity assay, cisplatin accumulation assay, Annexin V-FITC apoptosis assay, real-time qPCR analysis and western blotting analysis were used to clarify the potential mechanism. RESULTS Ginsenoside Rb1 could effectively reverse the cisplatin-resistance of A549/DDP in vitro and vivo. And after the co-treatment of Ginsenoside Rb1 plus cisplatin, the accumulation of cisplatin increased in A549/DDP cells, which was accompanied with the down-regulation of the mRNA and protein expression levels of ABCB1, SHH, PTCH1 and GLI2. Besides, the apoptosis-inducing ability of cisplatin improved by the relative regulation on the protein expression level of Bax and Bcl-2. Far more importantly, the changes of CYP3A4 mRNA and protein levels were not significant. CONCLUSION Ginsenoside Rb1 could increase the concentration of intracellular cisplatin and improve the insensitivity for cisplatin on A549/DDP cells. Even better, there was perhaps no unpredictable CYP3A4-mediated pharmacokinetic interactions after the combination of Ginsenoside Rb1 plus cisplatin. Ginsenoside Rb1 was a probable reversal agent for the cisplatin-insensitivity of A549/DDP cells, with a bifunction of inhibiting the efflux of two drug pumps (P-gp and PTCH1) by targeting ABCB1 and Hedgehog (Hh) pathway. In general, this research laid the groundwork for the development of a new reversal agent for the cisplatin-insensitivity of NSCLC.
Collapse
Affiliation(s)
- Xueni Niu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yinuo Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qiao Li
- Preparation Center, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110000, PR China
| | - Hong Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaoyu Fan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, 110006, PR China.
| |
Collapse
|
4
|
Al-Wahaibi LH, Mohammed AF, Abdelrahman MH, Trembleau L, Youssif BGM. Design, Synthesis, and Antiproliferative Activity of New 5-Chloro-indole-2-carboxylate and Pyrrolo[3,4- b]indol-3-one Derivatives as Potent Inhibitors of EGFR T790M/BRAF V600E Pathways. Molecules 2023; 28:1269. [PMID: 36770936 PMCID: PMC9921301 DOI: 10.3390/molecules28031269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mutant EGFR/BRAF pathways are thought to be crucial targets for the development of anticancer drugs since they are over-activated in several malignancies. We present here the development of a novel series of 5-chloro-indole-2-carboxylate 3a-e, 4a-c and pyrrolo[3,4-b]indol-3-ones 5a-c derivatives as potent inhibitors of mutant EGFR/BRAF pathways with antiproliferative activity. The cell viability assay results of 3a-e, 4a-c, and 5a-c revealed that none of the compounds tested were cytotoxic, and that the majority of those tested at 50 µM had cell viability levels greater than 87%. Compounds 3a-e, 4a-c, and 5a-c had significant antiproliferative activity with GI50 values ranging from 29 nM to 78 nM, with 3a-e outperforming 4a-c and 5a-c in their inhibitory actions against the tested cancer cell lines. Compounds 3a-e were tested for EGFR inhibition, with IC50 values ranging from 68 nM to 89 nM. The most potent derivative was found to be the m-piperidinyl derivative 3e (R = m-piperidin-1-yl), with an IC50 value of 68 nM, which was 1.2-fold more potent than erlotinib (IC50 = 80 nM). Interestingly, all the tested compounds 3a-e had higher anti-BRAFV600E activity than the reference erlotinib but were less potent than vemurafenib, with compound 3e having the most potent activity. Moreover, compounds 3b and 3e showed an 8-fold selectivity index toward EGFRT790M protein over wild-type. Additionally, molecular docking of 3a and 3b against BRAFV600E and EGFRT790M enzymes revealed high binding affinity and active site interactions compared to the co-crystalized ligands. The pharmacokinetics properties (ADME) of 3a-e revealed safety and good pharmacokinetic profile.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Anber F. Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mostafa H. Abdelrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
5
|
Parthiban A, Sachithanandam V, Sarangapany S, Misra R, Muthukrishnan P, Jeyakumar TC, Purvaja R, Ramesh R. Green synthesis of gold nanoparticles using quercetin biomolecule from mangrove plant, Ceriops tagal: Assessment of antiproliferative properties, cellular uptake and DFT studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Parthiban A, Sivasankar R, Rajdev B, Asha RN, Jeyakumar TC, Periakaruppan R, Naidu VGM. Synthesis, in vitro, in silico and DFT studies of indole curcumin derivatives as potential anticancer agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Silverman L, Bhatti G, Wulff JE, Moffitt MG. Improvements in Drug-Delivery Properties by Co-Encapsulating Curcumin in SN-38-Loaded Anticancer Polymeric Nanoparticles. Mol Pharm 2022; 19:1866-1881. [PMID: 35579267 DOI: 10.1021/acs.molpharmaceut.2c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SN-38 is an immensely potent anticancer agent although its use necessitates encapsulation to overcome issues of poor solubility and stability. Since SN-38 is a notoriously challenging drug to encapsulate, new avenues to increase encapsulation efficiency in polymer nanoparticles (PNPs) are needed. In this paper, we show that nanoprecipitation with curcumin (CUR) increases SN-38 encapsulation efficiencies in coloaded SN-38/CUR-PNPs based on poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG) by up to a factor of 10. In addition, we find a dramatic decrease in PNP polydispersities, from 0.34 to 0.07, as the initial CUR-to-polymer ratio increases from 0 to 10, with only a modest increase in PNP size (from 40 to 55 nm). Compared to coloaded PNP formation using nanoprecipitation in the bulk or in a gas-liquid, a two-phase microfluidic reactor shows similar trends with respect to CUR content, although improvements in SN-38 encapsulation efficiencies both with and without CUR are found using the microfluidic method. Additional precipitation studies without copolymer suggest that CUR increases the dispersion of SN-38 in the solvent medium of micelle formation, which may contribute to the observed encapsulation enhancement. Cytotoxicity studies of unencapsulated SN-38/CUR mixtures show that addition of CUR does not significantly affect SN-38 potency against either U87 (glioblastoma) or A204 (rhabdomyosarcoma) cell lines. However, we find significant differences in the potencies of SN-38/CUR-PNP formulations depending on initial CUR amounts, with an optimized formulation showing subnanomolar cytotoxicity against A204 cells, significantly more potent than either free SN-38 or PNPs containing only SN-38.
Collapse
Affiliation(s)
- Lisa Silverman
- Department of Chemistry, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, British Coloumbia V8W 2Y2, Canada
| | - Gitika Bhatti
- Department of Chemistry, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, British Coloumbia V8W 2Y2, Canada
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, British Coloumbia V8W 2Y2, Canada
| | - Matthew G Moffitt
- Department of Chemistry, University of Victoria, P.O. Box 1700, Stn CSC, Victoria, British Coloumbia V8W 2Y2, Canada
| |
Collapse
|
8
|
Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018‒2021). Acta Pharm Sin B 2022; 12:3006-3027. [PMID: 35865090 PMCID: PMC9293743 DOI: 10.1016/j.apsb.2022.03.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/23/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Cancer, which is the uncontrolled growth of cells, is the second leading cause of death after heart disease. Targeting drugs, especially to specific genes and proteins involved in growth and survival of cancer cells, is the prime need of research world-wide. Indole moiety, which is a combination of aromatic-heterocyclic compounds, is a constructive scaffold for the development of novel leads. Owing to its bioavailability, high unique chemical properties and significant pharmacological behaviours, indole is considered as the most inquisitive scaffold for anticancer drug research. This is illustrated by the fact that the U.S. Food and Drug Administration (FDA) has recently approved several indole-based anticancer agents such as panobinostat, alectinib, sunitinib, osimertinib, anlotinib and nintedanib for clinical use. Furthermore, hundreds of studies on the synthesis and activity of the indole ring have been published in the last three years. Taking into account the facts stated above, we have presented the most recent advances in medicinal chemistry of indole derivatives, encompassing hot articles published between 2018 and 2021 in anticancer drug research. The recent advances made towards the synthesis of promising indole-based anticancer compounds that may act via various targets such as topoisomerase, tubulin, apoptosis, aromatase, kinases, etc., have been discussed. This review also summarizes some of the recent efficient green chemical synthesis for indole rings using various catalysts for the period during 2018–2021. The review also covers the synthesis, structure‒activity relationship, and mechanism by which these leads have demonstrated improved and promising anticancer activity. Indole molecules under clinical and preclinical stages are classified into groups based on their cancer targets and presented in tabular form, along with their mechanism of action. The goal of this review article is to point the way for medicinal chemists to design and develop effective indole-based anticancer agents.
Collapse
|