1
|
Wang M, Zhou X, Wang Y, Tian Y, Gou W, Zhang L, Li C. Direct Synthesis of Benzothiazoles and Benzoxazoles from Carboxylic Acids Utilizing ( o-CF 3PhO) 3P as a Coupling Reagent. J Org Chem 2024; 89:16542-16552. [PMID: 39449154 DOI: 10.1021/acs.joc.4c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A general and efficient method for the direct synthesis of benzothiazoles and benzoxazoles from carboxylic acids with 2-aminobenzenethiols or 2-aminophenols using (o-CF3PhO)3P as a simple coupling reagent has been developed. Diverse benzothiazoles and benzoxazoles were synthesized in moderate to excellent yields. And the gram-scale preparation of benzothiazole and benzoxazole also proceeded smoothly under the mild conditions. Moreover, a plausible reaction mechanism was discussed, with (o-CF3PhO)3P and its hydrolysis product (o-CF3PhO)2P(O)H contributing to the formation of the target products as an amide synthesis coupling agent and a cyclization reaction promoter, respectively.
Collapse
Affiliation(s)
- Mei Wang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Xuan Zhou
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Yunhuan Wang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Yu Tian
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Wenchang Gou
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Lin Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Chun Li
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| |
Collapse
|
2
|
Erdönmez B, Altıntop MD, Akalın Çiftçi G, Özdemir A, Ece A. Design, Synthesis, and Evaluation of a New Series of Hydrazones as Small-Molecule Akt Inhibitors for NSCLC Therapy. ACS OMEGA 2023; 8:20056-20065. [PMID: 37305321 PMCID: PMC10249096 DOI: 10.1021/acsomega.3c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
In an endeavor to identify small molecules for the management of non-small-cell lung carcinoma, 10 new hydrazone derivatives (3a-j) were synthesized. MTT test was conducted to examine their cytotoxic activities against human lung adenocarcinoma (A549) and mouse embryonic fibroblast (L929) cells. Compounds 3a, 3e, 3g, and 3i were determined as selective antitumor agents on A549 cell line. Further studies were conducted to figure out their mode of action. Compounds 3a and 3g markedly induced apoptosis in A549 cells. However, both compounds did not show any significant inhibitory effect on Akt. On the other hand, in vitro experiments suggest that compounds 3e and 3i are potential anti-NSCLC agents acting through Akt inhibition. Furthermore, molecular docking studies revealed a unique binding mode for compound 3i (the strongest Akt inhibitor in this series), which interacts with both hinge region and acidic pocket of Akt2. However, it is understood that compounds 3a and 3g exert their cytotoxic and apoptotic effects on A549 cells via different pathway(s).
Collapse
Affiliation(s)
- Burak Erdönmez
- Department
of Pharmaceutical Chemistry, Graduate School of Health Sciences, Anadolu University, 26470 Eskişehir, Turkey
| | - Mehlika Dilek Altıntop
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department
of Biochemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| | - Ahmet Özdemir
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Abdulilah Ece
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, 34010 Istanbul, Turkey
| |
Collapse
|
3
|
Dey S, Ghosh P. Accessing Heteroannular Benzoxazole and Benzimidazole Scaffolds via Carbodiimides Using Azide-Isocyanide Cross-Coupling as Catalyzed by Mesoionic Singlet Palladium Carbene Complexes Derived from a Phenothiazine Moiety. ACS OMEGA 2023; 8:11039-11064. [PMID: 37008148 PMCID: PMC10061513 DOI: 10.1021/acsomega.2c07875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
The coupling of aryl and aliphatic azides with isocyanides yielding carbodiimides (8-17) were efficiently catalyzed by well-defined structurally characterized trans-(MIC)PdI2(L) [MIC = 1-CH2Ph-3-Me-4-(CH2N(C6H4)2S)-1,2,3-triazol-5-ylidene, L = NC5H5 (4), MesNC (5)], trans-(MIC)2PdI2 (6), and cis-(MIC)Pd(PPh3)I2 (7) type palladium complexes, which incidentally mark the first instances of the use of mesoionic singlet palladium carbene complexes for the said application. As observed from the product yields, the catalytic activity varied in the order 4 > 5 ∼ 6 > 7 for these complexes. A detailed mechanistic studies indicated that the catalysis proceeded via a palladium(0) (4a-7 a) species. Using a representative palladium precatalyst (4), the azide-isocyanide coupling was successfully extended to synthesizing two different bioactive heteroannular benzoxazole (18-22) and benzimidazole (23-27) derivatives, thereby broadening the scope of the catalytic application.
Collapse
Affiliation(s)
- Shreyata Dey
- Department
of Chemistry Indian Institute of Technology
Bombay Powai, Mumbai 400 076, India
| | - Prasenjit Ghosh
- Department
of Chemistry Indian Institute of Technology
Bombay Powai, Mumbai 400 076, India
| |
Collapse
|
4
|
Baranov N, Racovita S, Vasiliu S, Macsim AM, Lionte C, Sunel V, Popa M, Desbrieres J, Cheptea C. Immobilization and Release Studies of Triazole Derivatives from Grafted Copolymer Based on Gellan-Carrying Betaine Units. Molecules 2021; 26:3330. [PMID: 34206015 PMCID: PMC8199293 DOI: 10.3390/molecules26113330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022] Open
Abstract
New polymer-bioactive compound systems were obtained by immobilization of triazole derivatives onto grafted copolymers and grafted copolymers carrying betaine units based on gellan and N-vinylimidazole. For preparation of bioactive compound, two new types of heterocyclic thio-derivatives with different substituents were combined in a single molecule to increase the selectivity of the biological action. The 5-aryl-amino-1,3,4 thiadiazole and 5-mercapto-1,2,4-triazole derivatives, each containing 2-mercapto-benzoxazole nucleus, were prepared by an intramolecular cyclization of thiosemicarbazides-1,4 disubstituted in acidic and basic medium. The structures of the new bioactive compounds were confirmed by elemental and spectral analysis (FT-IR and 1H-NMR). The antimicrobial activity of 1,3,4 thiadiazoles and 1,2,4 triazoles was tested on gram-positive and gram-negative bacteria. The triazole compound was chosen to be immobilized onto polymeric particles by adsorption. The Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherm were used to describe the adsorption equilibrium. Also, the pseudo-first and pseudo-second models were used to elucidate the adsorption mechanism of triazole onto grafted copolymer based on N-vinylimidazole and gellan (PG copolymer) and grafted copolymers carrying betaine units (PGB1 copolymer). In vitro release studies have shown that the release mechanism of triazole from PG and PGB1 copolymers is characteristic of an anomalous transport mechanism.
Collapse
Affiliation(s)
- Nicolae Baranov
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania;
- Faculty of Chemistry, Al. I. Cuza University, Carol I Bvd., No. 11, 700506 Iasi, Romania;
| | - Stefania Racovita
- Department of “Mihai Dima” Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania; (S.R.); (A.M.M.)
| | - Silvia Vasiliu
- Department of “Mihai Dima” Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania; (S.R.); (A.M.M.)
| | - Ana Maria Macsim
- Department of “Mihai Dima” Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, No. 41A, 700487 Iasi, Romania; (S.R.); (A.M.M.)
| | - Catalina Lionte
- Faculty of Medicine, Gr. T. Popa University of Medicine and Pharmacy, Universitatii Street, No.16, 700115 Iasi, Romania;
| | - Valeriu Sunel
- Faculty of Chemistry, Al. I. Cuza University, Carol I Bvd., No. 11, 700506 Iasi, Romania;
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania;
- Academy of Romanian Scientists, Splaiul Independentei Street No. 54, 050085 Bucuresti, Romania
| | - Jacques Desbrieres
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Materiaux (IPREM), Pau and Pays de l’Adour University (UPPA), UMR CNRS 5254, Helioparc Pau Pyrenees, 2 av. President Angot, CEDEX 09, 64053 Pau, France;
| | - Corina Cheptea
- Department of Biomedical Sciences, Faculty of Biomedical Bioengineering, Gr. T. Popa University of Medicine and Pharmacy, Kogalniceanu Street No. 9–13, 700454 Iasi, Romania;
| |
Collapse
|
5
|
Li M, Li M, Tang Y, Sun Y, Qu L, Mao Z. Cu(II)/Vasicine Promoted Intramolecular C-O Formation: Synthesis of Benzoxazoles in EtOH. Curr Org Synth 2020; 18:310-315. [PMID: 33167843 DOI: 10.2174/1570179417666201109151752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVES Benzoxazoles are valuable bicyclic aromatic compounds; the construction of benzoxazoles via C-O cross-coupling reactions has attracted more and more attention. MATERIALS AND METHODS The best condition of C-O bond formation from o-haloanilides was carried out, taking Cu(OTf)2 (5 mol%) and vasicine (10 mol%) as the catalysts in EtOH in the presence of K2CO3 (2 eq.) for 12 h at 90°C. RESULTS A series of 2-substituted benzoxazoles have been prepared in high yields from 2-bromoanilides and 2- iodioanilides under mild conditions. CONCLUSION We have developed an efficient Cu-vasicine catalytic system for intramolecular C-O bond formation. This strategy is applicable to the synthesis of a wide variety of 2-substituted benzoxazoles by intramolecular O-arylation of o-haloanilides.
Collapse
Affiliation(s)
- Minxin Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Meiling Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yanling Tang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yun Sun
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lu Qu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zewei Mao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
6
|
Sever B, Akalın Çiftçi G, Altıntop MD. A new series of benzoxazole-based SIRT1 modulators for targeted therapy of non-small-cell lung cancer. Arch Pharm (Weinheim) 2020; 354:e2000235. [PMID: 32930414 DOI: 10.1002/ardp.202000235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023]
Abstract
In an attempt to identify potential anticancer agents for non-small-cell lung cancer (NSCLC) targeting sirtuin 1 (SIRT1), the synthesis of a new series of benzoxazoles (3a - i) was carried out through a facile and versatile synthetic route. The compounds were evaluated for their cytotoxic effects on A549 human lung adenocarcinoma and NIH/3T3 mouse embryonic fibroblast cells using the MTT assay. 2-[(5-Nitro-1H-benzimidazol-2-yl)thio]-N-(2-methylbenzoxazol-5-yl)acetamide (3e) and 2-[(5-chloro-1H-benzimidazol-2-yl)thio]-N-(2-methylbenzoxazol-5-yl)acetamide (3g) were the most potent and selective anticancer agents in this series against the A549 cell line, with IC50 values of 46.66 ± 11.54 and 55.00 ± 5.00 µM, respectively. The flow cytometry-based apoptosis detection assay was performed to determine their effects on apoptosis in A549 cells. Both compounds induced apoptosis in a dose-dependent manner. The effects of compounds 3e and 3g on SIRT1 activity were determined. On the basis of in vitro studies, it was observed that compound 3g caused a significant decrease in SIRT1 levels in a dose-dependent manner, whereas compound 3e increased the SIRT1 levels. According to molecular docking studies, the substantial alteration in the type of action could be attributed to the difference between the interactions of compounds 3e and 3g with the same residues in the active site of SIRT1 (PDB code: 4IG9). On the basis of in silico ADME (absorption, distribution, metabolism, and excretion) studies, these compounds are predicted to possess favorable ADME profiles. According to the in vitro and in silico studies, compounds 3e and 3g, small-molecule SIRT1 modulators, were identified as potential orally bioavailable anticancer agents for the targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
7
|
Cao H, Liu XJ, Bie FS, Yan P, Ma J, Shi YJ, Han Y. Efficient Synthesis of 2-Functionalized Benzoxazoles Catalyzed by Copper Iodide. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|