1
|
Pan S, Wu P, Bampi D, Ward JS, Rissanen K, Bolm C. Mechanochemical Conditions for Intramolecular N-O Couplings via Rhodium Nitrenoids Generated from N-Acyl Sulfonimidamides. Angew Chem Int Ed Engl 2024:e202413181. [PMID: 39381922 DOI: 10.1002/anie.202413181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Starting from N-acyl sulfonimidamides, mechanochemically generated rhodium nitrenoids undergo intramolecular N-O couplings to provide unprecedented 1,3,2,4-oxathiadiazole 3-oxides in good to excellent yields. The cyclization proceeds efficiently with a catalyst loading of only 0.5 mol % in the presence of phenyliodine(III) diacetate (PIDA) as oxidant. Neither an inert atmosphere nor additional heating is required in this solvent-free procedure. Under heat or blue light, the newly formed five-membered heterocycles function as nitrene precursors reacting with sulfoxides as exemplified by the imidation of dimethyl sulfoxide.
Collapse
Affiliation(s)
- Shulei Pan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Dimitra Bampi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box. 35, Survontie 9 B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
2
|
Zhang L, Hong C, Tang J, Wu W, Jiang H. Palladium-Catalyzed Carbohalogenation of Olefins with Alkynyl Oxime Ethers: Rapid Access to Chlorine-Containing Isoxazoles. J Org Chem 2024; 89:6615-6625. [PMID: 38652857 DOI: 10.1021/acs.joc.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A palladium-catalyzed carbohalogenation of olefins with alkynyl oxime ethers has been described, which provides efficient and practical access to various chlorine-containing isoxazoles. This method exhibits excellent regioselectivity, good functional group compatibility, and mild reaction conditions. The mechanistic studies suggest that the reaction proceeds via a stabilized π-benzyl palladium intermediate, which is essential for the formation of C(sp3)-Cl bonds.
Collapse
Affiliation(s)
- Liren Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chenjing Hong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junlong Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Visible Light‐Promoted Fluorescein/Ni‐Catalyzed Synthesis of Bis‐(β‐Dicarbonyls) using Olefins as a Methylene Bridge Synthon. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Saleh EAM, Kotian SY, Al Dawsari AM, Hassan I, Husain K, Abishad PC, Byrappa K, Sharabi RSSAL, Rai KML. Synthesis, Antioxidant, and Antibacterial Activities of Two Novel Series of 3,5-Disubstituted Isoxazole Ether-Linked Isoxazolines and 3,5-Disubstituted Pyrazole Ether-Linked Isoxazolines Mediated by Chloramine-T. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022050181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Bisht S, Kumar L, Kaul G, Akhir A, Saxena D, Chopra S, Karthik R, Goyal N, Batra S. Synthesis and Biological Evaluation of Substituted 3‐Isoxazolethioethers as Antileishmanial and Antibacterial Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202201664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shweta Bisht
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 UP India
| | - Lalan Kumar
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 UP India
| | - Grace Kaul
- Molecular Microbiology and Immunology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Abdul Akhir
- Molecular Microbiology and Immunology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Deepanshi Saxena
- Molecular Microbiology and Immunology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Sidharth Chopra
- Molecular Microbiology and Immunology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - R. Karthik
- Biochemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Neena Goyal
- Biochemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 UP India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| |
Collapse
|
6
|
Vasudha Mallam, Kumar MR, Vijayakumar B. Synthesis and Biological Evaluation of Novel Phenothiazine-Sulfonamide Based Isoxazole Derivatives as Potent Antibacterial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022030219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Alvi S, Jayant V, Ali R. Applications of Oxone® in Organic Synthesis: An Emerging Green Reagent of Modern Era. ChemistrySelect 2022. [DOI: 10.1002/slct.202200704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shakeel Alvi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| | - Vikrant Jayant
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| | - Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| |
Collapse
|
8
|
Insights into the reaction paths of copper(i) acetylides with dichloroglyoxime leading to 3,3′-biisoxazoles. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
A metal-free approach for in situ regioselective synthesis of isoxazoles via 1,3 dipolar cycloaddition reaction of nitrile oxide with propargyl bromide. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Unveiling the regioselective synthesis of antiviral 5-isoxazol-5-yl-2´-deoxyuridines from the perspective of a molecular electron density theory. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2022. [DOI: 10.2298/jsc211014106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The regioselective synthesis of a potent antiviral sugar nucleoside isoxazole analogue in the [3+2] cycloaddition (32CA) reaction of acetonitrile- -N-oxide (ANO) and acetyl-protected 5-ethynyl-2?-deoxyuridine (EDU) has been studied at the MPWB1K/6-311G(d,p) level within perspective of the molecular electron density theory (MEDT). From an electron localization function (ELF) analysis, ANO is classified as a zwitterionic species devoid of any pseudoradical or carbenoid centre. The ortho regioisomer is energetically preferred over the meta one by the activation enthalpy of 21.7?24.3 kJ mol-1, suggesting complete regioselectivity in agreement with the experiment. The activation enthalpy increases from 53.9 kJ mol-1 in the gas phase to 71.5 kJ mol-1 in water, suggesting more facile reaction in low polar solvents. The minimal global electron density transfer (GEDT) at the TSs suggests non-polar character and the formation of new covalent bonds has not been started at the located TSs, showing non-covalent intermolecular interactions from an atoms-in- -molecules (AIM) study and in the independent gradient model (IGM) isosurfaces. The AIM analysis shows more accumulation of electron density at the C?C interacting region relative to the C?O one, and earlier C?C bond formation is predicted from a bonding evolution theory (BET) study.
Collapse
|
11
|
Yu Z, Zhang D, Li X, Zhang B, Yang Z, Qian Y, Du Y. Synthesis of 4‐Chalcogenylated Isoxazoles Mediated by PhICl
2
and Diorganyl Disulfides/Diselenides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenyang Yu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 P. R. China
| | - Dongke Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 P. R. China
| | - Xiaoxian Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 P. R. China
| | - Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 P. R. China
| | - Zhifang Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 P. R. China
| | - Yan Qian
- College of Pharmaceutical Sciences Southwest University Chongqing 400715 P. R. China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|