1
|
Luca AC, Stoica C, Diaconescu C, Țarcă E, Roșu ST, Butnariu LI, Stana BA, Gafton B, Curici A, Roșu EV, Mîndru DE. The Role of Early Child Nutrition in Pulmonary Hypertension-A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1307. [PMID: 39594882 PMCID: PMC11593299 DOI: 10.3390/children11111307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Pulmonary hypertension is a complex condition that has distinct characteristics in pediatric populations. This review explores the important role of early childhood nutrition in the growth, progression, and management of pediatric pulmonary hypertension. Nutritional deficiencies, including those of vitamins C, D, and iron, are closely linked to worse outcomes in children with this disease, emphasizing the importance of early intervention to prevent malnutrition and promote growth. Emerging research revealed that promising nutrients like resveratrol, along with modulation of the gut and respiratory microbiomes, may offer therapeutic advances for managing pulmonary hypertension. However, the current literature is limited by a lack of pediatric-specific studies, with much of the data extrapolated from adult populations and animal models, especially rats. This review highlights the need for targeted research to develop effective nutritional interventions aimed at improving outcomes for pediatric patients.
Collapse
Affiliation(s)
- Alina-Costina Luca
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, RO-700115 Iasi, Romania; (A.-C.L.); (C.D.); (B.A.S.); (E.V.R.); (D.E.M.)
| | - Cristina Stoica
- The Emergency Hospital for Children “Sfanta Maria”, RO-700309 Iasi, Romania;
| | - Cosmin Diaconescu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, RO-700115 Iasi, Romania; (A.-C.L.); (C.D.); (B.A.S.); (E.V.R.); (D.E.M.)
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, RO-700115 Iasi, Romania
| | - Solange Tamara Roșu
- Department of Nursing, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, RO-700115 Iasi, Romania;
| | - Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, RO-700115 Iasi, Romania;
| | - Bogdan Aurelian Stana
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, RO-700115 Iasi, Romania; (A.-C.L.); (C.D.); (B.A.S.); (E.V.R.); (D.E.M.)
| | - Bogdan Gafton
- Department of Oncology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, RO-700115 Iasi, Romania;
| | - Antoanela Curici
- Department of Cellular and Molecular Biology and Histology, ‘’Carol Davila’’ University of Medicine and Pharmacy, RO-050474 Bucharest, Romania;
| | - Eduard Vasile Roșu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, RO-700115 Iasi, Romania; (A.-C.L.); (C.D.); (B.A.S.); (E.V.R.); (D.E.M.)
| | - Dana Elena Mîndru
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, RO-700115 Iasi, Romania; (A.-C.L.); (C.D.); (B.A.S.); (E.V.R.); (D.E.M.)
| |
Collapse
|
2
|
Navarro-Cruz AR, Juárez-Serrano D, Cesar-Arteaga I, Kammar-García A, Guevara-Díaz JA, Vera-López O, Lazcano-Hernández M, Pérez-Xochipa I, Segura-Badilla O. Oral administration of resveratrol reduces oxidative stress generated in the hippocampus of Wistar rats in response to consumption of ethanol. Front Behav Neurosci 2024; 17:1304006. [PMID: 38274548 PMCID: PMC10810024 DOI: 10.3389/fnbeh.2023.1304006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Chronic ethanol intake has been found to favor hippocampal deterioration and alter neuronal morphological maturation; resveratrol has been suggested as an antioxidant that may counteract these effects. The objective of this study was to analyze the effect of resveratrol on oxidative stress markers, endogenous antioxidant system in the hippocampus, and the behavior of male Wistar rats administered different concentrations of ethanol. Methods The animals, at 3 months old, were randomly distributed into 11 study groups (n = 6/group), orally administered (5 days on, 2 days off) with water (control), ethanol (10, 20, 30, 40 or 50%), or ethanol (10, 20, 30, 40 or 50%) plus resveratrol (10 mg/Kg/day) for 2 months. Subsequently, the production of nitrites, malondialdehyde, and 4-hydroxy-alkenal (HNE) and the enzymatic activity of catalase and superoxide dismutase (SOD) were quantified. Results The levels of nitric oxide and lipid peroxidation products were significantly increased in each ethanol concentration and were statistically different compared to the control group; however, resveratrol significantly reduced oxidative stress caused by high ethanol concentration. The SOD and CAT did not present significant changes with respect to the controls in any of the study groups. In the different concentrations of ethanol used, GR increases significantly in the groups administered with resveratrol but not GPx. Resveratrol was shown to maintain the results similar to the control at most ethanol concentrations. Discussion Our results suggest that resveratrol prevents oxidative stress induced by ethanol in the hippocampus by decreasing cellular lipid peroxidation, but does not prevent the activation of catalase or SOD enzymes; however, allows glutathione to be kept active and in adequate concentrations in its reduced form and avoids alterations in the locomotor system.
Collapse
Affiliation(s)
- Addí Rhode Navarro-Cruz
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Daniel Juárez-Serrano
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ivan Cesar-Arteaga
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ashuin Kammar-García
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City, Mexico
| | | | - Obdulia Vera-López
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Martin Lazcano-Hernández
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ivonne Pérez-Xochipa
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Orietta Segura-Badilla
- Departamento de Nutrición y Salud Pública, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán, Chile
| |
Collapse
|
3
|
Integrating epigenetics and metabolomics to advance treatments for pulmonary arterial hypertension. Biochem Pharmacol 2022; 204:115245. [PMID: 36096239 DOI: 10.1016/j.bcp.2022.115245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating vascular disease with multiple etiologies. Emerging evidence supports a fundamental role for epigenetic machinery and metabolism in the initiation and progression of PAH. Here, we summarize emerging epigenetic mechanisms that have been identified as contributors to PAH evolution, specifically, DNA methylation, histone modifications, and microRNAs. Furthermore, the interplay between epigenetics with metabolism is explored while new crosstalk targets to be investigated in PAH are proposed that highlight multi-omics strategies including integrated epigenomics and metabolomics. Therapeutic opportunities and challenges associated with epigenetics and metabolomics in PAH are examined, highlighting the role that epigenetics and metabolomics have in facilitating early detection, personalized dietary plans, and advanced drug therapy for PAH.
Collapse
|
4
|
Systematic analysis of nutrigenomic effects of polyphenols related to cardiometabolic health in humans - Evidence from untargeted mRNA and miRNA studies. Ageing Res Rev 2022; 79:101649. [PMID: 35595185 DOI: 10.1016/j.arr.2022.101649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular and metabolic disorders present major causes of mortality in the ageing population. Polyphenols present in human diets possess cardiometabolic protective properties, however their underlying molecular mechanisms in humans are still not well identified. Even though preclinical and in vitro studies advocate that these bioactives can modulate gene expression, most studies were performed using targeted approaches. With the objective to decipher the molecular mechanisms underlying polyphenols cardiometabolic preventive properties in humans, we performed integrative multi-omic bioinformatic analyses of published studies which reported improvements of cardiometabolic risk factors following polyphenol intake, together with genomic analyses performed using untargeted approach. We identified 5 studies within our criteria and nearly 5000 differentially expressed genes, both mRNAs and miRNAs, in peripheral blood cells. Integrative bioinformatic analyses (e.g. pathway and gene network analyses, identification of transcription factors, correlation of gene expression profiles with those associated with diseases and drug intake) revealed that these genes are involved in the processes such as cell adhesion and mobility, immune system, metabolism, or cell signaling. We also identified 27 miRNAs known to regulate processes such as cell cytoskeleton, chemotaxis, cell signaling, or cell metabolism. Gene expression profiles negatively correlated with expression profiles of cardiovascular disease patients, while a positive correlation was observed with gene expression profiles following intake of drugs against cardiometabolic disorders. These analyses further advocate for health protective effects of these bioactives against age-associated diseases. In conclusion, polyphenols can exert multi-genomic modifications in humans and use of untargeted methods coupled with bioinformatic analyses represent the best approach to decipher molecular mechanisms underlying healthy-ageing effects of these bioactives.
Collapse
|
5
|
Li C, Tan Y, Wu J, Ma Q, Bai S, Xia Z, Wan X, Liang J. Resveratrol Improves Bnip3-Related Mitophagy and Attenuates High-Fat-Induced Endothelial Dysfunction. Front Cell Dev Biol 2020; 8:796. [PMID: 32923443 PMCID: PMC7457020 DOI: 10.3389/fcell.2020.00796] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Statin treatment reduces cardiovascular risk. However, individuals with well-controlled low-density lipoprotein (LDL) levels may remain at increased risk owing to persistent high triglycerides and low high-density lipoprotein cholesterol. Because resveratrol promotes glucose metabolism and mitigates cardiovascular disorders, we explored its mechanism of protective action on high-fat-induced endothelial dysfunction. Human umbilical venous endothelial cells were treated with oxidized LDL (ox-LDL) in vitro. Endothelial function, cell survival, proliferation, migration, and oxidative stress were analyzed through western blots, quantitative polymerase chain reaction, ELISA, and immunofluorescence. ox-LDL induced endothelial cell apoptosis, proliferation arrest, and mobilization inhibition, all of which resveratrol reduced. ox-LDL suppressed the activities of mitochondrial respiration complex I and III and reduced levels of intracellular antioxidative enzymes, resulting in reactive oxygen species overproduction and mitochondrial dysfunction. Resveratrol treatment upregulated Bnip3-related mitophagy and prevented ox-LDL-mediated mitochondrial respiration complexes inactivation, sustaining mitochondrial membrane potential and favoring endothelial cell survival. We found that resveratrol enhanced Bnip3 transcription through hypoxia-inducible factor 1 (HIF1) and 5' AMP-activated protein kinase (AMPK). Inhibition of AMPK and HIF1 abolished resveratrol-mediated protection of mitochondrial redox balance and endothelial viability. Together, these data demonstrate resveratrol reduces hyperlipemia-related endothelial damage by preserving mitochondrial homeostasis.
Collapse
Affiliation(s)
- Chen Li
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiandi Wu
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Qinghui Ma
- Department of Oncology Hematology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Shuchang Bai
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Zhangqing Xia
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Xiaoliang Wan
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Jianqiu Liang
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| |
Collapse
|
6
|
Ashrafizadeh M, Zarrabi A, Najafi M, Samarghandian S, Mohammadinejad R, Ahn KS. Resveratrol targeting tau proteins, amyloid-beta aggregations, and their adverse effects: An updated review. Phytother Res 2020; 34:2867-2888. [PMID: 32491273 DOI: 10.1002/ptr.6732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Resveratrol (Res) is a non-flavonoid compound with pharmacological actions such as antioxidant, antiinflammatory, hepatoprotective, antidiabetes, and antitumor. This plant-derived chemical has a long history usage in treatment of diseases. The excellent therapeutic impacts of Res and its capability in penetration into blood-brain barrier have made it an appropriate candidate in the treatment of neurological disorders (NDs). Tau protein aggregations and amyloid-beta (Aβ) deposits are responsible for the induction of NDs. A variety of studies have elucidated the role of these aggregations in NDs and the underlying molecular pathways in their development. In the present review, based on the recently published articles, we describe that how Res administration could inhibit amyloidogenic pathway and stimulate processes such as autophagy to degrade Aβ aggregations. Besides, we demonstrate that Res supplementation is beneficial in dephosphorylation of tau proteins and suppressing their aggregations. Then, we discuss molecular pathways and relate them to the treatment of NDs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|