1
|
Khadanga V, Mishra PC. A review on toxicity mechanism and risk factors of nanoparticles in respiratory tract. Toxicology 2024; 504:153781. [PMID: 38493948 DOI: 10.1016/j.tox.2024.153781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
This comprehensive review focuses on various dimensions of nanoparticle toxicity, emphasizing toxicological characteristics, assessment techniques, and examinations of relevant studies on the effects on biological systems. The primary objective is to comprehend the potential risks associated with nanoparticles and to provide efficient strategies for mitigating them by consolidating current research discoveries. For in-depth insights, the discussions extend to crucial aspects such as toxicity associated with different nanoparticles, human exposure, and nanoparticle deposition in the human respiratory tract. The analysis utilizes the multiple-path particle dosimetry (MPPD) modeling for computational simulation. The SiO2 nanoparticles with a volume concentration of 1% and a particle size of 50 nm are used to depict the MPPD modeling of the Left upper (LU), left lower (LL), right upper (RU), right middle (RM), and right lower (RL) lobes in the respiratory tract. The analysis revealed a substantial 67.5% decrease in the deposition fraction as the particle size increased from 10 nm to 100 nm. Graphical representation emphasizes the significant impact of exposure path selection on nanoparticle deposition, with distinct deposition values observed for nasal, oral, oronasal-mouth breather, oronasal - normal augmenter, and endotracheal paths (0.00291 μg, 0.00332 μg, 0.00297 μg, 0.00291 μg, and 0.00383 μg, respectively). Consistent with the focus of the review, the article also addresses crucial mitigation strategies for managing nanoparticle toxicity.
Collapse
Affiliation(s)
- Vidyasri Khadanga
- Thermal Research Laboratory (TRL), School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Purna Chandra Mishra
- Thermal Research Laboratory (TRL), School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
2
|
Li G, Yan R, Chen W, Wu R, Liang J, Chen J, Zhou Z. Fluorescence/electrochemical dual-mode strategy for Golgi protein 73 detection based on molybdenum disulfide/ferrocene/palladium nanoparticles and nitrogen-doped graphene quantum dots. Mikrochim Acta 2024; 191:190. [PMID: 38460000 DOI: 10.1007/s00604-024-06262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 03/11/2024]
Abstract
Golgi protein 73 (GP73) is a new serum marker associated with early diagnosis and postoperative assessment of hepatocellular carcinoma (HCC). Herein, an electrochemical/fluorescence dual-signal biosensor was designed for determination of GP73 based on molybdenum disulfide/ferrocene/palladium nanoparticles (MoS2-Fc-PdNPs) and nitrogen-doped graphene quantum dots (NGQDs). GP73 aptamer (Apt) was labeled with NGQDs to form the NGQDs-Apt fluorescence probe. MoS2-Fc-PdNPs served not only as the fluorescence quencher but also as electrochemical enhancer. The sensing platform (NGQDs-Apt/MoS2-Fc-PdNPs) was formed based on the fluorescence resonance energy transfer (FRET) mechanism. In the presence of GP73, the specific binding of NGQDs-Apt to GP73 interrupted FRET, restoring the fluorescence of NGQDs-Apt at λex/em = 348/438 nm and enhancing the oxidation current of Fc in MoS2-Fc-PdNPs at 0.04 V through differential pulse voltammetry (DPV). Under the optimal conditions, the DPV current change and fluorescence recovery have a good linear relationship with GP73 concentration from 1.00 to 10.0 ng/mL. The calibration equation for the fluorescence mode was Y1 = (0.0213 ± 0.00127)X + (0.0641 ± 0.00448) and LOD was 0.812 ng/mL (S/N = 3). The calibration equation of the electrochemical mode was Y2 = (3.41 ± 0.111)X + (1.62 ± 0.731), and LOD of 0.0425 ng/mL (S/N = 3). The RSDs of fluorescence mode and electrochemical mode after serum detection were 1.62 to 5.21% and 0.180 to 6.62%, respectively. By combining the electrochemical and fluorescence assay, more comprehensive and valuable information for GP73 was provided. Such dual-mode detection platform shows excellent reproducibility, stability, and selectivity and has great application potential.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
| | - Ruijie Yan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Wei Chen
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Runqiang Wu
- Department of Clinical Laboratory, The 924th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Jintao Liang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| | - Jiejing Chen
- Department of Clinical Laboratory, The 924th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| |
Collapse
|
3
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
4
|
Story D, Aminoroaya A, Skelton Z, Kumari M, Zhang Y, Smith BR. Nanoparticle-Based Therapies in Hypertension. Hypertension 2023; 80:2506-2514. [PMID: 37767725 PMCID: PMC10651274 DOI: 10.1161/hypertensionaha.123.19523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Nearly 1.4 billion people worldwide suffer from arterial hypertension, a significant risk factor for cardiovascular disease which is now the leading cause of death. Despite numerous drugs designed to treat hypertension, only ≈14% of hypertensive individuals have their blood pressure under control. A critical factor negatively impacting the efficacy of available treatments is their poor bioavailability. This leads to increased dosing requirements which can result in more side effects, resulting in patient noncompliance. A recent solution to improve dosing and bioavailability issues has been to incorporate drugs into nanoparticle carriers, with over 50 nanodrugs currently on the market across all diseases, and another 51 currently in clinical trials. Given their ability to improve solubility and bioavailability, nanoparticles may offer significant advantages in the formulation of antihypertensives to overcome pharmacokinetic shortcomings. To date, however, no antihypertensive nanoformulations have been clinically approved. This review assesses in vivo study data from preclinical antihypertensive nanoformulation development and testing. Combined, the results of these studies suggest nanoformulation of antihypertensive drugs may be a promising solution to overcome the poor efficacy of currently available antihypertensives, and with further advances has the potential to open paths for new substances that have heretofore been clinically unrealistic due to poor bioavailability.
Collapse
Affiliation(s)
- Darren Story
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
| | - Alireza Aminoroaya
- Department of Chemical Engineering and Materials Science (A.A., B.R.S.), Michigan State University, East Lansing, MI
| | - Zak Skelton
- College of Osteopathic Medicine (Z.S.), Michigan State University, East Lansing, MI
| | - Manisha Kumari
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
| | - Yapei Zhang
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
| | - Bryan Ronain Smith
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (D.S., M.K., Y.Z., B.R.S.), Michigan State University, East Lansing, MI
- Department of Chemical Engineering and Materials Science (A.A., B.R.S.), Michigan State University, East Lansing, MI
| |
Collapse
|