Oley MH, Oley MC, Sukarno V, Faruk M. Advances in Three-Dimensional Printing for Craniomaxillofacial Trauma Reconstruction: A Systematic Review.
J Craniofac Surg 2024;
35:1926-1933. [PMID:
38958985 DOI:
10.1097/scs.0000000000010451]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
Craniomaxillofacial (CMF) fractures present significant challenges for plastic surgeons due to their intricate nature. Conventional methods such as autologous bone grafts have limitations, necessitating advancements in reconstructive surgery techniques. This study reviewed the use of three-dimensional printing for CMF trauma reconstruction using human studies. A systematic search of PubMed, EMBASE, and Google Scholar was conducted in February 2024 for case reports, case series, and clinical trials related to CMF trauma reconstruction using three-dimensional printing technology. The authors' systematic review included 20 studies and a total of 170 participants with CMF bone defects. In general, the authors observed low bias risk in analyzed case reports and series, serious bias risk in nonrandomized controlled trials, and moderate bias risk in randomized controlled trials. The printed objects included CMF structure model prototypes, patient-specific implants, and other custom surgical devices. Studies reveal successful outcomes, including restored facial symmetry and function, restored orbital occlusion, resolved enophthalmos and diplopia, achieved cosmetically symmetrical lower face reconstruction, and precise fitting of surgical devices, enhancing patient and surgeon comfort. However, complications such as local infection, implant exposure, and persistent diplopia were reported. Three-dimensional printed devices reduced surgery time but increased preparation time and production costs. In-house production options could mitigate these time and cost expenditures. Three-dimensional printing holds potential in CMF trauma reconstruction, addressing both functional and esthetic restoration. Nevertheless, challenges persist in implementing this advanced technology in resource-limited environments.
Collapse