1
|
Amend N, Timperley CM, Bird M, Green AC, Worek F, Seeger T. The use of bispyridinium non-oxime analogues for the restoration of nerve agent impaired neuromuscular transmission in rat hemidiaphragms - Structure optimization. Toxicol Lett 2024; 397:42-47. [PMID: 38723915 DOI: 10.1016/j.toxlet.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024]
Abstract
Organophosphate pesticide poisoning challenges health care systems worldwide. Furthermore, nerve agents remain a continuous threat. The treatment options for organophosphate poisoning have virtually been unchanged for decades, relying on symptomatic treatment and the use of oximes to indirectly restore neuromuscular function. Hence, compounds targeting directly nicotinic acetylcholine receptors (nAChRs) might substantially improve treatment options. The current study investigated a series of bispyridinium analogues with a trimethylene or 2,2'-diethyloxy linker in a rat hemidiaphragm model, using indirect field stimulation. Methyl- and ethyl-substituted bispyridinium analogues restored neuromuscular function up to 37 ± 17% (MB419, a 3-methyl analogue) at a stimulation frequency of 20 Hz. The bispyridinium analogues with a 2- or 3-methyl group, or a 2- or 3-ethyl group, tended towards a higher restoration of neuromuscular function than those with a 4-methyl or 4-ethyl group, respectively. The current data can be used for future studies to optimize structure-based molecular modeling of compounds targeting the nAChR.
Collapse
Affiliation(s)
- Niko Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, Munich 80937, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, Munich 80336, Germany.
| | - Christopher M Timperley
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Mike Bird
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - A Christopher Green
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, Munich 80937, Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, Munich 80937, Germany
| |
Collapse
|
2
|
Amend N, Timperley CM, Bird M, Green AC, Worek F, Seeger T. Restoration of nerve agent impaired neuromuscular transmission in rat diaphragm by bispyridinium non-oximes - Structure-activity relationships. Toxicology 2024; 503:153741. [PMID: 38311098 DOI: 10.1016/j.tox.2024.153741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Organophosphate (OP) poisoning is currently treated with atropine, oximes and benzodiazepines. The nicotinic signs, i.e., respiratory impairment, can only be targeted indirectly via the use of oximes as reactivators of OP-inhibited acetylcholinesterase. Hence, compounds selectively targeting nicotinic acetylcholine receptors (nAChRs) might fundamentally improve current treatment options. The bispyridinium compound MB327 has previously shown some therapeutic effect against nerve agents in vitro and in vivo. Nevertheless, compound optimization was deemed necessary, due to limitations (e.g., toxicity and efficacy). The current study investigated a series of 4-tert-butyl bispyridinium compounds and of corresponding bispyridinium compounds without substituents in a rat diaphragm model using an indirect field stimulation technique. The length of the respective linker influenced the ability of the bispyridinium compounds to restore muscle function in rat hemidiaphragms. The current data show structure-activity relationships for a series of bispyridinium compounds and provide insight for future structure-based molecular modeling.
Collapse
Affiliation(s)
- Niko Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Goethestr. 33, 80336 Munich, Germany.
| | - Christopher M Timperley
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Mike Bird
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - A Christopher Green
- Chemical, Biological and Radiological (CBR) Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| |
Collapse
|
3
|
Hansen RB, Laursen CCH, Nawaz N, Madsen JS, Nielsen HH, Kruuse C, Møller A, Degn M, Lambertsen KL. Leukocyte TNFR1 and TNFR2 Expression Contributes to the Peripheral Immune Response in Cases with Ischemic Stroke. Cells 2021; 10:cells10040861. [PMID: 33918875 PMCID: PMC8069317 DOI: 10.3390/cells10040861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Tumor necrosis factor receptor 1 and 2 (TNFR1 and TNFR2) have been found in brain parenchyma of stroke patients, and plasma levels are increased in the acute phase of stroke. We evaluated associations between TNFR1 and TNFR2 plasma levels and stroke severity, infarct size, and functional outcome. Furthermore, we examined cellular expression of TNFR1 and TNFR2 on leukocyte subpopulations to explore the origin of the increased receptor levels. Blood samples were taken from 33 acute ischemic stroke patients and 10 healthy controls. TNFR1 and TNFR2 plasma concentrations were measured and correlated against the Scandinavian Stroke Scale at admission, infarct volume, and the modified Rankin Scale score three months after stroke onset. Classical, intermediate, and non-classical monocytes as well as neutrophils were purified, and cellular expression of TNFR1 and TNFR2 was examined using flow cytometry. TNFR1 and TNFR2 plasma levels were both increased after ischemic stroke, but we found no correlation with patient outcome measurements. Compared to healthy controls, ischemic stroke patients had decreased non-classical monocyte and neutrophil populations expressing TNFR1 and increased neutrophils expressing TNFR2, and decreased non-classical populations co-expressing both TNFR1 and TNFR2. This study supports the hypothesis of an acute immunological response orchestrated by the peripheral immune system following an ischemic stroke. However, the origin of the increased TNFR1 and TNFR2 plasma levels could not be clearly linked to peripheral monocytes or neutrophils. Future studies are needed and will help clarify the potential role as treatment target.
Collapse
Affiliation(s)
- Rikke B. Hansen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (R.B.H.); (C.C.H.L.); (N.N.); (H.H.N.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Cathrine C. H. Laursen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (R.B.H.); (C.C.H.L.); (N.N.); (H.H.N.)
- Brain Research—Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Niala Nawaz
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (R.B.H.); (C.C.H.L.); (N.N.); (H.H.N.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
| | - Jonna S. Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (R.B.H.); (C.C.H.L.); (N.N.); (H.H.N.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Brain Research—Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Christina Kruuse
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark;
- Department of Neurology, Herlev Gentofte Hospital, 2730 Herlev, Denmark
| | - Arne Møller
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Institute of Clinical Medicine, Center of Functionally Integrative Neuroscience, 8000 Aarhus, Denmark
| | - Matilda Degn
- Pediatric Oncology Laboratory, Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Correspondence: (M.D.); (K.L.L.); Tel.: +45-6061-0084 (M.D.); +45-6550-3806 (K.L.L.)
| | - Kate L. Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (R.B.H.); (C.C.H.L.); (N.N.); (H.H.N.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- Brain Research—Inter-Disciplinary Guided Excellence (BRIDGE), Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- OPEN—Open Patient data Explorative Network, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Correspondence: (M.D.); (K.L.L.); Tel.: +45-6061-0084 (M.D.); +45-6550-3806 (K.L.L.)
| |
Collapse
|
4
|
Amend N, Niessen KV, Seeger T, Wille T, Worek F, Thiermann H. Diagnostics and treatment of nerve agent poisoning—current status and future developments. Ann N Y Acad Sci 2020; 1479:13-28. [DOI: 10.1111/nyas.14336] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Niko Amend
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Karin V. Niessen
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Thomas Seeger
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology Munich Germany
| |
Collapse
|