1
|
Marques BDS, de Andrade KN, Peixoto BP, Dos Santos FM, Pedrosa LF, Fiorot RG, Costa de Souza M. Sequential nucleophilic aromatic substitutions on cyanuric chloride: synthesis of BODIPY derivatives and mechanistic insights. Org Biomol Chem 2024; 22:5987-5998. [PMID: 38989906 DOI: 10.1039/d4ob00683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Herein we report a study on the sequential substitution of different nucleophiles on cyanuric chloride to obtain potential candidates for metal sensors (5a-c). The set of nucleophiles on the 1,3,5-triazine ring includes a phenolic BODIPY, an aminoalkyl pyridine and aminoalkyl phosphoramidates, each one designed to play a specific role in the final fluoroionophore. Three new triazine triads were synthesized in similar yields: 5a (45%), 5b (43%) and 5c (52%) after a methodical sequential combination of the nucleophiles via thermodependent nucleophilic aromatic substitution of the three chlorine atoms of cyanuric chloride. To ratify the synthetic results we simulated the reaction mechanisms for the different nucleophiles, aiming to address the distinctive orthogonality and temperature control inherent in this process, identifying and providing a sound rationale for any preferential sequence of nucleophiles inserted into the triazine core. According to our experimental and computational analysis (thermo- and kinetic preferences), we have identified the following preferential order for the sequential substitution: p-hydroxybenzaldehyde > 2-(pyridin-2-yl)ethanamine > aminoalkyl phosphoramidate, indicating that all steps follow a single-step process (concerted) in two stages, where nucleophilic addition precedes leaving group dissociation. The Meisenheimer σ-complex was identified as a transition state structure, with insufficient stability to exist as an intermediate. We observed a consistent and progressive increase in barrier height: 2-8 kcal mol-1 for the first step, 9-15 kcal mol-1 for the second step, and >15 kcal mol-1 for the third substitution. These findings align with the experimental observation of thermodependency in the sequential substitution.
Collapse
Affiliation(s)
- Bruno da Silva Marques
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Karine Nascimento de Andrade
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Bárbara Pereira Peixoto
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Fernando Martins Dos Santos
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Leandro Ferreira Pedrosa
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Fluminense, 27213-145, Volta Redonda, RJ, Brazil
| | - Rodolfo Goetze Fiorot
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Marcos Costa de Souza
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| |
Collapse
|
2
|
Savickienė V, Bieliauskas A, Belyakov S, Arbačiauskienė E, Šačkus A. Multicomponent Synthesis of New Fluorescent Boron Complexes Derived from 3-Hydroxy-1-phenyl-1 H-pyrazole-4-carbaldehyde. Molecules 2024; 29:3432. [PMID: 39065010 PMCID: PMC11279739 DOI: 10.3390/molecules29143432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Novel fluorescent pyrazole-containing boron (III) complexes were synthesized employing a one-pot three-component reaction of 3-hydroxy-1-phenyl-1H-pyrazole-4-carbaldehyde, 2-aminobenzenecarboxylic acids, and boronic acids. The structures of the novel heterocyclic compounds were confirmed using 1H-, 13C-, 15N-, 19F-, and 11B-NMR, IR spectroscopy, HRMS, and single-crystal X-ray diffraction data. The photophysical properties of the obtained iminoboronates were investigated using spectroscopic techniques, such as UV-vis and fluorescence spectroscopies. Compounds display main UV-vis absorption maxima in the blue region, and fluorescence emission maxima are observed in the green region of the visible spectrum. It was revealed that compounds exhibit fluorescence quantum yield up to 4.3% in different solvents and demonstrate an aggregation-induced emission enhancement effect in mixed THF-water solutions.
Collapse
Affiliation(s)
- Viktorija Savickienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania;
| | - Sergey Belyakov
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania;
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania;
| |
Collapse
|
3
|
Mehta R, Kumar S. ESIPT-based dual-emissive perimidine derivative as a rapid and sensitive sensor for Cu 2+ and Al 3+: Construction of memory device, 2-to-1 encoder and 1-to-2 decoder. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122471. [PMID: 36801732 DOI: 10.1016/j.saa.2023.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
An ESIPT based fluorescent perimidine derivative oPSDAN was developed and characterized by 1H NMR, 13C NMR and mass spectroscopy. The study of the photo-physical properties of the sensor unveiled its selectivity and sensitivity towards Cu2+ and Al3+ ions. The sensing of ions was accompanied by colorimetric change (for Cu2+) as well as emission turn-off response. The binding stoichiometries of sensor oPSDAN with Cu2+ ion and Al3+ ions were determined to be 2:1 and 1:1, respectively. The binding constants and detection limits for Cu2+ and Al3+ were calculated from the UV-vis and fluorescence titration profiles as, 7.1 × 104 M-1, 1.9 × 104 M-1 and 9.89 nM, 1.5 × 10-8 M, respectively. The mechanism was established by 1H NMR as well as mass titrations and was supported by DFT and TD-DFT calculations. The UV-vis and fluorescence spectral results were further utilized for construction of memory device, encoder and decoder. Sensor-oPSDAN was also tested for determining Cu2+ ions in drinking water.
Collapse
Affiliation(s)
- Ruhi Mehta
- Department of Chemistry, Multani Mal Modi College, Patiala 147001, Punjab, India
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, Patiala 147001, Punjab, India.
| |
Collapse
|
4
|
Amendoeira AF, Luz A, Valente R, Roma-Rodrigues C, Ali H, van Lier JE, Marques F, Baptista PV, Fernandes AR. Cell Uptake of Steroid-BODIPY Conjugates and Their Internalization Mechanisms: Cancer Theranostic Dyes. Int J Mol Sci 2023; 24:3600. [PMID: 36835012 PMCID: PMC9963437 DOI: 10.3390/ijms24043600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Estradiol-BODIPY linked via an 8-carbon spacer chain and 19-nortestosterone- and testosterone-BODIPY linked via an ethynyl spacer group were evaluated for cell uptake in the breast cancer cell lines MCF-7 and MDA-MB-231 and prostate cancer cell lines PC-3 and LNCaP, as well as in normal dermal fibroblasts, using fluorescence microscopy. The highest level of internalization was observed with 11β-OMe-estradiol-BODIPY 2 and 7α-Me-19-nortestosterone-BODIPY 4 towards cells expressing their specific receptors. Blocking experiments showed changes in non-specific cell uptake in the cancer and normal cells, which likely reflect differences in the lipophilicity of the conjugates. The internalization of the conjugates was shown to be an energy-dependent process that is likely mediated by clathrin- and caveolae-endocytosis. Studies using 2D co-cultures of cancer cells and normal fibroblasts showed that the conjugates are more selective towards cancer cells. Cell viability assays showed that the conjugates are non-toxic for cancer and/or normal cells. Visible light irradiation of cells incubated with estradiol-BODIPYs 1 and 2 and 7α-Me-19-nortestosterone-BODIPY 4 induced cell death, suggesting their potential for use as PDT agents.
Collapse
Affiliation(s)
- Ana F. Amendoeira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - André Luz
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Ruben Valente
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Hasrat Ali
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Johan E. van Lier
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066 Bobadela, Portugal
| | - Pedro V. Baptista
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| |
Collapse
|
5
|
Patel N, Modi K, Bhatt K, Mohan B, Parikh J, Liska A, Ludvik J, Patel C, Jain V, Mishra D. Cyclotriveratrylene (CTV): Rise of an untapped supramolecular prodigy providing a new generation of sensors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Algethami JS. A Review on Recent Progress in Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Cr 3+/6+Ions. Crit Rev Anal Chem 2022; 54:487-507. [PMID: 35758232 DOI: 10.1080/10408347.2022.2082242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Chromium occurs in the environment primarily in two valence states, trivalent Cr3+ and hexavalent Cr6+, which have different physicochemical and biochemical properties. However, the higher concentration of Cr3+/6+ can cause various adverse effects on human health. Therefore, detecting Cr3+/6+ ions is important in various samples. Colorimetric and fluorescent chemosensors are the most powerful tools for the detection of Cr3+/6+ ions. These chemosensors have excellent bioimaging capability and significant sensitivity and selectivity. In this article, different colorimetric and fluorescent chemosensors based on organic compounds, including Schiff base, antipyrine, diarylethene, pyrene, crown ether, dansyl, pyridine, thiazole, coumarin, boradiazaindacene, rhodamine, imidazole, hydrazone, and other functional groups for detection of Cr3+/6+ ions have been reviewed, classified them according to different fluorophore and recognition mode. I hope this article will help the readers for the future design of highly effective, sensitive, and selective chemosensors for the detection and determination of Cr3+/6+ ions.
Collapse
Affiliation(s)
- Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
| |
Collapse
|
7
|
Yilmaz I. Fluorescence Sensors. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411018666220104214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ibrahim Yilmaz
- Department of Chemistry, Kamil Ozdag Faculty of Science,
Karamanoğlu Mehmetbey University,
Karaman, Turkey
| |
Collapse
|
8
|
Pothulapadu CAS, Jayaraj A, N S, Priyanka RN, Sivaraman G. Novel Benzothiazole-Based Highly Selective Ratiometric Fluorescent Turn-On Sensors for Zn 2+ and Colorimetric Chemosensors for Zn 2+, Cu 2+, and Ni 2+ Ions. ACS OMEGA 2021; 6:24473-24483. [PMID: 34604629 PMCID: PMC8482408 DOI: 10.1021/acsomega.1c02855] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 05/17/2023]
Abstract
Metal ions play a very important role in environmental as well as biological fields. The detection of specific metal ions at a minute level caught much attention, and hence, several probes are available in the literature. Even though benzothiazole-based molecules have a special place in the medicinal field, only very few chemosensors are reported based on this moiety. The current work describes the design and synthesis of the benzothiazole-based chemosensor for a highly selective and sensitive detection of biologically important metal ions such as Zn2+, Cu2+, and Ni2+. The sensing studies of compound-1 showed a ratiometric as well as colorimetric response toward Zn2+, Cu2+, and Ni2+ ions and color changes from colorless to yellow and is found to be insensitive toward various metal ions (Cd2+, Cr3+, Mn2+, Pb2+, Ba2+, Al3+, Ca2+, Fe2+, Fe3+, Mg2+, K+, and Na+). Further, compound-1 exhibited ratiometric as well as turn-on-enhanced fluorescence response toward Zn2+ ions and turn off response for Cu2+ and Ni2+ ions. The Job plots revealed that the binding stoichiometry of compound-1 and metal ions is 2:1. The detection limits were found to be 0.25 ppm for Zn2+, while it was 0.30 ppm and 0.34 ppm for Ni2+ and Cu2+, respectively. In addition, density functional theory results strongly support the colorimetric response of metals, and the reversibility studies suggested that compound-1 can be used as a powerful chemosensor for the detection of Zn2+, Cu2+, and Ni2+ ions. The bioimaging data illustrated that compound-1 is a very effective ratiometric sensor for Zn2+ ions in live cells.
Collapse
Affiliation(s)
- Chinna Ayya Swamy Pothulapadu
- Main
Group Organometallics Materials, Supramolecular Chemistry and Catalysis
Lab, Department of Chemistry, National Institute
of Technology, Calicut 673601, India
| | - Anjitha Jayaraj
- Main
Group Organometallics Materials, Supramolecular Chemistry and Catalysis
Lab, Department of Chemistry, National Institute
of Technology, Calicut 673601, India
| | - Swathi N
- Maharani
Lakshmi Ammanni College for Women (Autonomous), Bangalore 560012, India
| | - Ragam N. Priyanka
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Gandhi Sivaraman
- Department
of Chemistry, Gandhigram Rural Institute
(Deemed to be University), Gandhigram 624302, India
| |
Collapse
|