1
|
Ma Y, Zhang L, Zhou P. Difference in Allergenicity between β-Lactoglobulin in Bovine Milk and Caprine Milk is Related to Their Respective Digestive Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23969-23978. [PMID: 39418592 DOI: 10.1021/acs.jafc.4c05954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The underlying cause of differences in sensitization between bovine and caprine milk β-lactoglobulin (β-LG) remains unclear. In this study, denatured forms of bovine and caprine milk β-LG were obtained through reductive alkylation and evaluated for allergenicity and digestibility in Balb/c mice. Results indicated weaker sensitization to nondenatured caprine milk β-LG compared to nondenatured bovine milk β-LG, with no significant difference in sensitization observed between denatured β-LG from both sources. The nondenatured β-LG of caprine milk and two types of denatured β-LG were degraded more rapidly than nondenatured bovine milk β-LG in the small intestine of mice. In terms of undenatured proteins, mouse intestinal tissues absorbed more bovine milk β-LG than caprine milk β-LG. Overall, structural disparities in β-LG between bovine and caprine milk resulted in varying digestion rates. Moreover, the slower-degraded bovine milk β-LG and its enzymatic fragments facilitated easier absorption by the intestine, disrupting the Th1/Th2 balance and increasing susceptibility to severe allergic reactions in mice.
Collapse
Affiliation(s)
- Ying Ma
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lina Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Ebrahimi A, Andishmand H, Huo C, Amjadi S, Khezri S, Hamishehkar H, Mahmoudzadeh M, Kim KH. Glycomacropeptide: A comprehensive understanding of its major biological characteristics and purification methodologies. Compr Rev Food Sci Food Saf 2024; 23:e13370. [PMID: 38783570 DOI: 10.1111/1541-4337.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Glycomacropeptide (GMP) is a bioactive peptide derived from whey protein, consisting of 64 amino acids. It is a phenylalanine-free peptide, making it a beneficial dietary option for individuals dealing with phenylketonuria (PKU). PKU is an inherited metabolic disorder characterized by high levels of phenylalanine in the bloodstream, resulting from a deficiency of phenylalanine dehydrogenase in affected individuals. Consequently, patients with PKU require lifelong adherence to a low-phenylalanine diet, wherein a significant portion of their protein intake is typically sourced from a phenylalanine-free amino acid formula. GMP has several nutritional values, numerous bioactivity properties, and therapeutic effects in various inflammatory disorders. Despite all these features, the purification of GMP is an imperative requirement; however, there are no unique methods for achieving this goal. Traditionally, several methods have been used for GMP purification, such as thermal or acid treatment, alcoholic precipitation, ultrafiltration (UF), gel filtration, and membrane separation techniques. However, these methods have poor specificity, and the presence of large amounts of impurities can interfere with the analysis of GMP. More efficient and highly specific GMP purification methods need to be developed. In this review, we have highlighted and summarized the current research progress on the major biological features and purification methodologies associated with GMP, as well as providing an extensive overview of the recent developments in using charged UF membranes for GMP purification and the influential factors.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student research committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Sima Khezri
- Student research committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mahmoudzadeh
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
3
|
Xu Y, Zhang F, Mu G, Zhu X. Effect of lactic acid bacteria fermentation on cow milk allergenicity and antigenicity: A review. Compr Rev Food Sci Food Saf 2024; 23:e13257. [PMID: 38284611 DOI: 10.1111/1541-4337.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 01/30/2024]
Abstract
Cow milk is a major allergenic food. The potential prevention and treatment effects of lactic acid bacteria (LAB)-fermented dairy products on allergic symptoms have garnered considerable attention. Cow milk allergy (CMA) is mainly attributed to extracellular and/or cell envelope proteolytic enzymes with hydrolysis specificity. Numerous studies have demonstrated that LAB prevents the risk of allergies by modulating the development and regulation of the host immune system. Specifically, LAB and its effectors can enhance intestinal barrier function and affect immune cells by interfering with humoral and cellular immunity. Fermentation hydrolysis of allergenic epitopes is considered the main mechanism of reducing CMA. This article reviews the linear epitopes of allergens in cow milk and the effect of LAB on these allergens and provides insight into the means of predicting allergenic epitopes by conventional laboratory analysis methods combined with molecular simulation. Although LAB can reduce CMA in several ways, the mechanism of action remains partially clarified. Therefore, this review additionally attempts to summarize the main mechanism of LAB fermentation to provide guidance for establishing an effective preventive and treatment method for CMA and serve as a reference for the screening, research, and application of LAB-based intervention.
Collapse
Affiliation(s)
- Yunpeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P. R. China
| | - Feifei Zhang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, P. R. China
| | - Guangqing Mu
- Dalian Key Laboratory of Functional Probiotics, Dalian, Liaoning, P. R. China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P. R. China
| |
Collapse
|
4
|
Liu E, Yang M, Li Q, Cheng Q, Wang Y, Ye L, Tian F, Ding H, Ling Y, Xia M, Ji ZS, Li W. Antitumor activity of a whey peptide-based enteral diet in C26 colon tumor-bearing mice. J Food Sci 2023; 88:4275-4288. [PMID: 37615996 DOI: 10.1111/1750-3841.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
The antitumor effects of a whey peptide-based enteral diet, whose main components are whey peptides and yogurt fermented by Lactobacillus delbureckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, were investigated in mice. Our results indicated that the tumor weight in C26 carcinoma-transplanted mice was significantly smaller at day 16 post-implantation in the whey peptide-based enteral diet group (1.36 ± 0.54 g) than in the control group (1.83 ± 0.89 g) (p < 0.05). The whey peptide-based enteral diet group exhibited higher tumor cell apoptosis, lower cell proliferation, and inactive angiogenesis indicating by higher degree of TUNEL, lower positive rates of Ki-67, VEGF, and CD34 than control group. It also attenuated inflammatory cell infiltration of spleen and liver as indicated by the decreased spleen index (10.89 ± 2.06 vs. 12.85 ± 2.92, p < 0.05) and increased liver index (58.09 ± 11.37 vs. 53.19 ± 6.67, p < 0.05) in the whey peptide-based enteral diet group than the control diet group. These results proved the inhibitory effect of the whey peptide-based enteral diet on tumor growth, which might be attributed to the whey peptides component. PRACTICAL APPLICATION: A whey peptide-based enteral diet (MEIN® ), containing cheese whey and multiple nutrients, was selected to verify the anti-tumor effect by animal experiments. The tumor weight growth, tumor cell proliferation, inflammatory cell infiltration of spleen and liver in tumor model mice was significantly attenuated by the whey peptide-based enteral diet, that might be attributed to its whey peptides component. These results provided an additive direction for cancer therapy and need a further study including clinical trials.
Collapse
Affiliation(s)
- Enuo Liu
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Mingjun Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Qilin Li
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Qianqian Cheng
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Yuzhu Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Luyi Ye
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Fang Tian
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Hao Ding
- Shanghai Tongyuan Food Science and Technology Co., Ltd., Shanghai, China
| | - Yiqun Ling
- Department of Nutrition, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Minjie Xia
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Zai-Si Ji
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
- Shanghai Tongyuan Food Science and Technology Co., Ltd., Shanghai, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| |
Collapse
|
5
|
Inamuddin. Ion Exchange Techniques: Materials and Analytical Applications (Part: I). CURR ANAL CHEM 2022. [DOI: 10.2174/1573411018666220104220557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Inamuddin
- Department of Applied Chemistry
Zakir Husain College of Engineering and Technology
Faculty of Engineering and Technology
Aligarh Muslim University, Aligarh-202 002
India
| |
Collapse
|