1
|
Li M, Tang J, Lin C, Shen A, Ma X, Wu J, Gao X, Wang P. A Smart Responsive Fluorescence-MR Nanoprobe for Monitoring Tumor Response to Immunotherapy. Adv Healthc Mater 2023; 12:e2300602. [PMID: 37184883 DOI: 10.1002/adhm.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Accurately evaluating tumor responses to immunotherapy is clinically relevant. However, non-invasive, real-time visualization techniques to evaluate tumor immunotherapy are still lacking. Herein, a smart responsive fluorescence-MR dual-modal nanoprobe, QM(GP)-MZF(CP), is reported that can be targeted for cleavage by the cytotoxic T cell activation marker granzyme B and the apoptosis-related marker cysteine-aspartic acid-specific protease 3 (Caspase-3). The probe uses quinoline-malononitrile (QM), an aggregation-induced emission luminogen, and Mn-Zn ferrite magnetic nanoparticles (MZF-MNPs), a T2-weighted imaging (T2WI) contrast agent, as imaging molecules that are linked with the substrate peptides specific to granzyme B and Caspase-3. Therefore, both granzyme B and Caspase-3 can target and cleave the substrate peptides in QM(GP)-MZF(CP). Via aggregation-induced fluorescence imaging of QM and the aggregation-induced T2WI-enhanced imaging effect of MZF-MNPs, the status of T cells after tumor immunotherapy and the subsequent triggering of tumor cell apoptosis can be determined to identify tumor responsiveness to immunotherapy and thereby evaluate the effectiveness of this therapy in the early stages of treatment.
Collapse
Affiliation(s)
- Minghua Li
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Junjun Tang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Chao Lin
- Institute for Translational Medicine, Shanghai East Hospital, Institute for biomedical Engineering and Nanoscience, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Aijun Shen
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Xiaolong Ma
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Jiaqi Wu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Xiaolong Gao
- Department of Radiology, Luodian Hospital, Shanghai University, Shanghai, 201908, P. R. China
- Department of Radiology, Baoshan District, Luodian Hospital, Shanghai, 201908, P. R. China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| |
Collapse
|
2
|
Kumar S, Shukla MK, Sharma AK, Jayaprakash GK, Tonk RK, Chellappan DK, Singh SK, Dua K, Ahmed F, Bhattacharyya S, Kumar D. Metal-based nanomaterials and nanocomposites as promising frontier in cancer chemotherapy. MedComm (Beijing) 2023; 4:e253. [PMID: 37025253 PMCID: PMC10072971 DOI: 10.1002/mco2.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Cancer is a disease associated with complex pathology and one of the most prevalent and leading reasons for mortality in the world. Current chemotherapy has challenges with cytotoxicity, selectivity, multidrug resistance, and the formation of stemlike cells. Nanomaterials (NMs) have unique properties that make them useful for various diagnostic and therapeutic purposes in cancer research. NMs can be engineered to target cancer cells for early detection and can deliver drugs directly to cancer cells, reducing side effects and improving treatment efficacy. Several of NMs can also be used for photothermal therapy to destroy cancer cells or enhance immune response to cancer by delivering immune-stimulating molecules to immune cells or modulating the tumor microenvironment. NMs are being modified to overcome issues, such as toxicity, lack of selectivity, increase drug capacity, and bioavailability, for a wide spectrum of cancer therapies. To improve targeted drug delivery using nano-carriers, noteworthy research is required. Several metal-based NMs have been studied with the expectation of finding a cure for cancer treatment. In this review, the current development and the potential of plant and metal-based NMs with their effects on size and shape have been discussed along with their more effective usage in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Monu Kumar Shukla
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | | | | | - Rajiv K. Tonk
- School of Pharmaceutical SciencesDelhi Pharmaceutical Sciences and Research UniversityNew DelhiDelhiIndia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of Health, University of Technology SydneySydneyAustralia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneySydneyAustralia
| | - Faheem Ahmed
- Department of PhysicsCollege of ScienceKing Faisal UniversityAl‐HofufAl‐AhsaSaudi Arabia
| | | | - Deepak Kumar
- Department of Pharmaceutical ChemistrySchool of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
3
|
Qian L, Li Q, Ding Z, Luo K, Su J, Chen J, Zhu G, Gan Z, Yu Q. Prodrug Nanosensitizer Overcomes the Radiation Resistance of Hypoxic Tumor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56454-56470. [PMID: 36525559 DOI: 10.1021/acsami.2c14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Clinical radiation therapy (RT) is often hindered by the low radiation energy absorption coefficient and the hypoxic features of tumor tissues. Among the tremendous efforts devoted to overcoming the barriers to efficient RT, the application of hypoxic radiosensitizers and cell-cycle-specific chemotherapeutics has shown great potential. However, their effectiveness is often compromised by their limited bioavailability, especially in the hypoxic region, which plays a major role in radioresistance. Herein, to simultaneously improve the delivery efficacy of both hypoxic radiosensitizer and cell-cycle-specific drug, a gambogic acid (GA) metronidazole (MN) prodrug (GM) was designed and synthesized based on GA, a naturally occurring chemotherapeutic and multiple pathway inhibitor, and MN, a typical hypoxic radiosensitizer. In combination with MN-containing block copolymers, the prodrug nanosensitizer (NS) of GM was obtained. Owing to the bioreduction of MN, the as-designed prodrug could be efficiently delivered to hypoxic cells and act on mitochondria to cause the accumulation of reactive oxygen species. The strong G2/M phase arrest caused by the prodrug NS could further sensitize treated cells to external radiation under hypoxic conditions by increasing DNA damage and delaying DNA repair. After coadministration of the NS with a well-established tissue-penetrating peptide, efficient tumor accumulation, deep tumor penetration, and highly potent chemoradiotherapy could be achieved.
Collapse
Affiliation(s)
- Lili Qian
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Qian Li
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing100029, China
| | - Kejun Luo
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Jiamin Su
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Jiawei Chen
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Guangying Zhu
- Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing100029, China
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| | - Qingsong Yu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
4
|
Maji D, Oh D, Gautam KS, Zhou M, Zhang H, Kao J, Giblin D, Smith M, Lim J, Lee S, Kang Y, Kim WJ, Kim C, Achilefu S. Copper-Catalyzed Covalent Dimerization of Near-Infrared Fluorescent Cyanine Dyes: Synergistic Enhancement of Photoacoustic Signals for Molecular Imaging of Tumors. ANALYSIS & SENSING 2022; 2:e202100045. [PMID: 37621644 PMCID: PMC10448761 DOI: 10.1002/anse.202100045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 08/26/2023]
Abstract
Photoacoustic (PA) imaging relies on the absorption of light by chromophores to generate acoustic waves used to delineate tissue structures and physiology. Here, we demonstrate that Cu(II) efficiently catalyzes the dimerization of diverse near-infrared (NIR) cyanine molecules, including a peptide conjugate. NMR spectroscopy revealed a C-C covalent bond along the heptamethine chains, creating stable molecules under conditions such as a wide range of solvents and pH mediums. Dimerization achieved >90% fluorescence quenching, enhanced photostability, and increased PA signals by a factor of about 4 at equimolar concentrations compared to the monomers. In vivo study with a mouse cancer model revealed that dimerization enhanced tumor retention and PA signal, allowing cancer detection at doses where the monomers are less effective. While the dye dimers highlighted peritumoral blood vessels, the PA signal for dimeric tumor-targeting dye-peptide conjugate, LS301, was diffuse throughout the entire tumor mass. A combination of the ease of synthesis, diversity of molecules that are amenable to Cu(II)-catalyzed dimerization, and the high acoustic wave amplification by these stable dimeric small molecules ushers a new strategy to develop clinically translatable PA molecular amplifiers for the emerging field of molecular photoacoustic imaging.
Collapse
Affiliation(s)
- Dolonchampa Maji
- Optical Radiology Lab, Department of Radiology Washington University School of Medicine St. Louis, MO 63110 (USA)
- Department of Biomedical Engineering Washington University in St. Louis St. Louis, MO 63130 (USA)
| | - Donghyeon Oh
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Device Innovation Center Pohang University of Science and Technology (POSTECH) Pohang, 37673 (Republic of Korea)
| | - Krishna Sharmah Gautam
- Optical Radiology Lab, Department of Radiology Washington University School of Medicine St. Louis, MO 63110 (USA)
| | - Mingzhou Zhou
- Optical Radiology Lab, Department of Radiology Washington University School of Medicine St. Louis, MO 63110 (USA)
| | - Haini Zhang
- Optical Radiology Lab, Department of Radiology Washington University School of Medicine St. Louis, MO 63110 (USA)
- Department of Biomedical Engineering Washington University in St. Louis St. Louis, MO 63130 (USA)
| | - Jeff Kao
- Department of Chemistry Washington University in St. Louis St. Louis, MO 63130 (USA)
| | - Daryl Giblin
- Department of Chemistry Washington University in St. Louis St. Louis, MO 63130 (USA)
| | - Matthew Smith
- Optical Radiology Lab, Department of Radiology Washington University School of Medicine St. Louis, MO 63110 (USA)
| | - Junha Lim
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH) Pohang, 37673 (Republic of Korea)
| | - Seunghyun Lee
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Device Innovation Center Pohang University of Science and Technology (POSTECH) Pohang, 37673 (Republic of Korea)
| | - Youngnam Kang
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH) Pohang, 37673 (Republic of Korea)
| | - Won Jong Kim
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang, 37673 (Republic of Korea)
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Device Innovation Center Pohang University of Science and Technology (POSTECH) Pohang, 37673 (Republic of Korea)
| | - Samuel Achilefu
- Optical Radiology Lab, Department of Radiology Washington University School of Medicine St. Louis, MO 63110 (USA)
- Department of Biomedical Engineering Washington University in St. Louis St. Louis, MO 63130 (USA)
- Department of Medicine Washington University School of Medicine St. Louis, MO 63110 (USA)
| |
Collapse
|