1
|
Determination of Levamisole and Mebendazole and Its Two Metabolite Residues in Three Poultry Species by HPLC-MS/MS. Foods 2021; 10:foods10112841. [PMID: 34829122 PMCID: PMC8624778 DOI: 10.3390/foods10112841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/29/2022] Open
Abstract
A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed to simultaneously analyze levamisole (LMS) and mebendazole (MBZ) and its two metabolites, 5-hydroxymebendazole (HMBZ) and 2-amino-5-benzoylbenzimidazole (AMBZ), in poultry muscle (chicken, duck and goose). In the sample preparation process, basic ethyl acetate was used as the extraction agent, and the extracted samples were back-extracted with hydrochloric acid, purified by Oasis MCX solid-phase extraction (SPE) cartridges, and reconstituted in the initial mobile phase after being blown dry with nitrogen. Chromatographic separation was performed on an Xbridge C18 column (4.6 mm × 150 mm, 5 μm) with 0.1% formic acid in water and acetonitrile as the mobile phases, and gradient elution was performed at a flow rate of 0.6 mL/min and a column temperature of 35 °C. In blank poultry muscle samples, the spiked concentrations of LMS, MBZ, HMBZ, and AMBZ were within the range of the limit of quantitation (LOQ) to 25 μg/kg. The peak areas of the four target drugs had a good linear relationship with the concentration, and the determination coefficient (R2) values were higher than 0.9990. The average recoveries of LMS, MBZ, HMBZ, and AMBZ were 86.77–96.94%; the intraday relative standard deviations (RSDs) were 1.75–4.99% at LOQ, 0.5 maximum residue limit (MRL), 1.0 MRL, and 2.0 MRL; the interday RSDs were 2.54–5.52%; and the LODs and LOQs were 0.04–0.30 μg/kg and 0.12–0.80 μg/kg, respectively.
Collapse
|
2
|
Huang L, Shen R, Liu R, Xu S, Shuai Q. Facile fabrication of magnetic covalent organic frameworks for magnetic solid-phase extraction of diclofenac sodium in milk. Food Chem 2021; 347:129002. [PMID: 33482486 DOI: 10.1016/j.foodchem.2021.129002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/07/2020] [Accepted: 12/31/2020] [Indexed: 01/05/2023]
Abstract
A robust magnetic solid-phase extraction (MSPE) method based on magnetic covalent organic framework (MCOF) coupled with high-performance liquid chromatography (HPLC)-ultraviolet (UV)/mass spectrometry (MS) was proposed for the determination of trace diclofenac sodium (DS) in milk. The prepared MCOF exhibited high extraction efficiency, which can be attributed to its high specific surface area as well as strong π-π and hydrophobic interactions between MCOF and DS. In addition, the potential influencing factors, including sample volume, adsorbent dosage, extraction time, and elution parameters, were fully estimated. The experimental results demonstrated that the established method was sensitive for the quantification of DS with high accuracy. Remarkably, the detection limit of DS was found to be 10 ng/kg under the optimal conditions. More impressively, the developed method was successfully applied to monitor trace DS in milk, demonstrating its outstanding durability and practical potential as an appealing method to regular monitor trace pharmaceutical contaminants in real food samples.
Collapse
Affiliation(s)
- Lijin Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| | - Rujia Shen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China
| | - Ruiqi Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China
| | - Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Xinlian College, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Qin Shuai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, PR China.
| |
Collapse
|
3
|
Nixon E, Mays TP, Routh PA, Yeatts JL, Fajt VR, Hairgrove T, Baynes RE. Plasma, urine and tissue concentrations of Flunixin and Meloxicam in Pigs. BMC Vet Res 2020; 16:340. [PMID: 32938437 PMCID: PMC7493136 DOI: 10.1186/s12917-020-02556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The objective of this study was to determine the renal clearance of flunixin and meloxicam in pigs and compare plasma and urine concentrations and tissue residues. Urine clearance is important for livestock show animals where urine is routinely tested for these drugs. Fourteen Yorkshire/Landrace cross pigs were housed in individual metabolism cages to facilitate urine collection. This is a unique feature of this study compared to other reports. Animals received either 2.2 mg/kg flunixin or 0.4 mg/kg meloxicam via intramuscular injection and samples analyzed by mass spectrometry. Pigs were euthanized when drugs were no longer detected in urine and liver and kidneys were collected to quantify residues. RESULTS Drug levels in urine reached peak concentrations between 4 and 8 h post-dose for both flunixin and meloxicam. Flunixin urine concentrations were higher than maximum levels in plasma. Urine concentrations for flunixin and meloxicam were last detected above the limit of quantification at 120 h and 48 h, respectively. The renal clearance of flunixin and meloxicam was 4.72 ± 2.98 mL/h/kg and 0.16 ± 0.04 mL/h/kg, respectively. Mean apparent elimination half-life in plasma was 5.00 ± 1.89 h and 3.22 ± 1.52 h for flunixin and meloxicam, respectively. Six of seven pigs had detectable liver concentrations of flunixin (range 0.0001-0.0012 µg/g) following negative urine samples at 96 and 168 h, however all samples at 168 h were below the FDA tolerance level (0.03 µg/g). Meloxicam was detected in a single liver sample (0.0054 µg/g) at 72 h but was below the EU MRL (0.065 µg/g). CONCLUSIONS These data suggest that pigs given a single intramuscular dose of meloxicam at 0.4 mg/kg or flunixin at 2.2 mg/kg are likely to have detectable levels of the parent drug in urine up to 2 days and 5 days, respectively, after the first dose, but unlikely to have tissue residues above the US FDA tolerance or EU MRL following negative urine testing. This information will assist veterinarians in the therapeutic use of these drugs prior to livestock shows and also inform livestock show authorities involved in testing for these substances.
Collapse
Affiliation(s)
- Emma Nixon
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 27607, Raleigh, NC, United States
| | - Travis P Mays
- Texas A & M Veterinary Medical Diagnostic Laboratory, 77840, College Station, TX, United States
| | - Patricia A Routh
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 27607, Raleigh, NC, United States
| | - James L Yeatts
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 27607, Raleigh, NC, United States
| | - Virginia R Fajt
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, 77843, College Station, TX, United States
| | - Thomas Hairgrove
- Texas A & M AgriLife Extension, Texas A & M University, 77843, College Station, TX, United States
| | - Ronald E Baynes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 27607, Raleigh, NC, United States.
| |
Collapse
|
4
|
Kittrell HC, Mochel JP, Brown JT, Forseth AMK, Hayman KP, Rajewski SM, Coetzee JF, Schneider BK, Ratliffe B, Skoland KJ, Karriker LA. Pharmacokinetics of Intravenous, Intramuscular, Oral, and Transdermal Administration of Flunixin Meglumine in Pre-wean Piglets. Front Vet Sci 2020; 7:586. [PMID: 33005646 PMCID: PMC7485418 DOI: 10.3389/fvets.2020.00586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/21/2020] [Indexed: 11/29/2022] Open
Abstract
Castration and tail-docking of pre-wean piglets are common procedures that are known to induce pain and would benefit from pain mitigation. Flunixin meglumine (FM) is a non-steroidal anti-inflammatory drug currently approved in the United States for pyrexia in swine and lameness pain in cattle. The objective of this study was to establish the pharmacokinetic (PK) parameters resulting from intravenous (IV), intramuscular (IM), oral (PO) and transdermal (TD) administration of FM in pre-wean piglets. FM was administered to thirty-nine pre-wean piglets at a target dose of 2.2 mg/kg for IV and IM and 3.3 mg/kg for PO and TD route. Plasma was collected at twenty-seven time points from 0 to 9 days after FM administration and concentrations were determined using ultra-high performance liquid chromatography coupled with mass spectrometry (UPLC-MS). Pharmacokinetic data were analyzed using noncompartmental analysis (NCA) methods and nonlinear mixed-effects (NLME). Initial plasma concentration for IV (C0) 11,653 μg/L and mean peak plasma concentrations (Cmax) 6,543 μg/L (IM), 4,883 μg/L (PO), and 31.5 μg/L (TD) were measured. The time points of peak FM concentrations (tmax) were estimated 30 min, 1 h, and 24 h for IM, PO, and TD, respectively. The bioavailability (F) of PO and IM FM was estimated at >99%, while the bioavailability of TD FM was estimated to be 7.8%. The reported Cmax of FM after IM and PO administration is consistent with therapeutic concentration ranges that mitigate pain in other species and adult pigs. However, the low estimated concentration of FM after TD dosing is not expected to mitigate pain in pre-wean piglets. The low F of TD FM suggests that expanding the surface area of application is unlikely to be sufficient to establish an effective TD dose for pain, while the high bioavailability for PO FM should allow for an effective dose regimen to be established.
Collapse
Affiliation(s)
- Heather C Kittrell
- Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jonathan P Mochel
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Justin T Brown
- Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Anna Marie K Forseth
- Animal Health Division, Montana Department of Livestock, Helena, MT, United States
| | - Kristen P Hayman
- Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Suzanne M Rajewski
- Analytical Chemistry Services, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Johann F Coetzee
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Benjamin K Schneider
- SMART Pharmacology, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Brette Ratliffe
- Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Kristin J Skoland
- Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Locke A Karriker
- Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Popova IE, Morra MJ. Fate of the nonsteroidal, anti-inflammatory veterinary drug flunixin in agricultural soils and dairy manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19746-19753. [PMID: 32221835 DOI: 10.1007/s11356-020-08438-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
A large percentage of flunixin, a nonsteroidal anti-inflammatory drug widely used for treating livestock, is excreted in intact form and thus potentially available for environmental transport. As the fate of flunixin in the environment is unknown, our objective was to quantify sorption, desorption, and transformation in five agricultural soils and manure using batch equilibrium methods. Concentrations of flunixin and degradation products were determined by high performance liquid chromatography time of flight mass spectrometry. For all studied soils, sorption of flunixin exhibited linear character, with both linear and Freundlich models providing adequate fit. Linear sorption coefficients varied from 8 to 112 L kg-1. The strongest Pearson correlations with sorption coefficients were for clay content (r = 0.8693), total nitrogen (r = 0.7998), and organic carbon (r = 0.6291). Desorption of the reversibly bound fraction (3-10% of total sorbed flunixin) from all five studied soils exhibited non-hysteretic character suggesting low affinity of this fraction of flunixin to soil. Flunixin degradation in soils was relatively slow, exhibiting half-lives of 39-203 days, thus providing time for off-site transport and environmental contamination. The biological impacts of flunixin at environmentally relevant concentrations must be determined given its environmental behavior and extensive use as a nonsteroidal anti-inflammatory drug in livestock. Graphical abstract.
Collapse
Affiliation(s)
- Inna E Popova
- Department of Soil & Water Systems, University of Idaho, 875 Perimeter Drive MS 2340, Moscow, ID, 83844-2340, USA.
| | - Matthew J Morra
- Department of Soil & Water Systems, University of Idaho, 875 Perimeter Drive MS 2340, Moscow, ID, 83844-2340, USA
| |
Collapse
|