1
|
Choradia A, Bai K, Soni S, Nguyen N, Adhikari S, Rahul DK, Gupta R. Beyond hot flashes: Exploring the role of estrogen therapy in postmenopausal women for myocardial infarction prevention and recovery. BIOMOLECULES & BIOMEDICINE 2024; 24:4-13. [PMID: 37650466 PMCID: PMC10787608 DOI: 10.17305/bb.2023.9535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Myocardial infarction (MI) commonly known as "heart attack" results from the blockage of blood flow to the heart. Postmenopausal women face an elevated risk of MI due to declining estrogen levels, a hormone pivotal in maintaining cardiovascular health. It promotes vasodilation, reduce inflammation, and improves lipid profiles. While estrogen therapy shows promise in mitigating MI risk for postmenopausal woman, its efficacy in prevention and recovery remains a subject of debate. This review provides a critical assessment of existing evidence on estrogen therapy's cardioprotective effects for postmenopausal women. It delves into estrogen's role in vascular function enhancement, inflammation reduction, and lipid metabolism modulation. Additionally, it addresses the various forms of estrogen therapy, administration methods, dosage considerations, safety implications, and associated risks. The review highlights the existing controversies and knowledge gaps related to estrogen therapy for MI prevention. It underscores the urgency for in-depth research to decipher the nexus between estrogen therapy and MI risk, especially concerning primary prevention and specific postmenopausal subgroups. Future studies should investigate optimal formulations, doses, and administration routes of estrogen therapy as well as assess treatment timing and duration. Comparative studies and long-term follow-up are necessary to inform clinical decision-making and improve patient care. Addressing these research gaps will empower clinicians to make more judicious choices about estrogen therapy for MI prevention and recovery in postmenopausal women, aiming for enhanced patient outcomes.
Collapse
Affiliation(s)
| | | | - Suha Soni
- University of Texas Health Science Center School of Public Health, Texas, USA
| | | | | | | | | |
Collapse
|
2
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
3
|
Zhang J, Zhang J, Zhao W, Li Q, Cheng W. Low expression of NR1H3 correlates with macrophage infiltration and indicates worse survival in breast cancer. Front Genet 2023; 13:1067826. [PMID: 36699456 PMCID: PMC9868774 DOI: 10.3389/fgene.2022.1067826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Nuclear receptor NR1H3 is a key regulator of macrophage function and lipid homeostasis. Here, we aimed to visualize the prognostic value and immunological characterization of NR1H3 in breast cancer. Methods: The expression pattern and prognostic value of NR1H3 were analyzed via multiple databases, including TIMER2, GEPIA2 and Kaplan-Meier Plotter. TISIDB, TIMER2 and immunohistochemical analysis were used to investigate the correlation between NR1H3 expression and immune infiltration. GO enrichment analysis, KEGG analysis, Reactome analysis, ConsensusPathDB and GeneMANIA were used to visualize the functional enrichment of NR1H3 and signaling pathways related to NR1H3. Results: We demonstrated that the expression of NR1H3 was significantly lower in breast cancer compared with adjacent normal tissues. Kaplan-Meier survival curves showed shorter overall survival in basal breast cancer patients with low NR1H3 expression, and poorer prognosis of relapse-free survival in breast cancer patients with low NR1H3 expression. NR1H3 was mainly expressed in immune cells, and its expression was closely related with infiltrating levels of tumor-infiltrating immune cells in breast cancer. Additionally, univariate and multivariate analysis indicated that the expression of NR1H3 and the level of macrophage infiltration were independent prognostic factors for breast cancer. Gene interaction network analysis showed the function of NR1H3 involved in regulating of innate immune response and macrophage activation. Moreover, NR1H3 may function as a predictor of chemoresponsiveness in breast cancer. Conclusion: These findings suggest that NR1H3 serves as a prognostic biomarker and contributes to the regulation of macrophage activation in breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhao
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingxian Li
- The Center of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, China,*Correspondence: Qingxian Li, ; Wenwu Cheng,
| | - Wenwu Cheng
- Department of Integrated Therapy, Shanghai Cancer Center, Fudan University, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qingxian Li, ; Wenwu Cheng,
| |
Collapse
|
4
|
Mao Z, Huang R, Xu J, Guo R, Wei X. Liver X Receptor α in Sciatic Nerve Exerts an Alleviating Effect on Neuropathic Pain Behaviors Induced by Crush Injury. Neurochem Res 2021; 46:358-366. [PMID: 33200264 DOI: 10.1007/s11064-020-03171-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022]
Abstract
Peripheral nerve injury often leads to neuropathic pain. In the present study, we assessed the role of liver x receptor alpha (LXRα), an oxysterol regulated nuclear transcription factor that promotes reverse cholesterol transport and alternative (M2) macrophage activation, in the development of neuropathic pain. We found that compared to WT mice, in LXRα knockout mice the development of mechanical allodynia following sciatic nerve crush was accelerated and the duration was prolonged. Furthermore, the expression of M1-like macrophage marker iNOS and M1-like macrophages inducer hydrogen peroxide (H2O2) was increased, whereas expression of M2 macrophage marker arginase-1 (Arg-1) and interleukin-10 (IL-10) was reduced in the sciatic nerve of LXRα knockout mice. Moreover, peri-sciatic administration of LXRs agonist GW3965, immediately after the nerve crush, into wild type mice, suppressed the mechanical allodynia induced by crush injury. GW3965 also suppressed the expression of iNOS and production of H2O2 in the injured nerve and enhanced the expression of IL-10 and Arg-1. Importantly, peri-sciatic administration of IL-10 neutralization antibody prevented the alleviating effect of GW3965 on mechanical allodynia. Altogether, these results indicates that the lack of LXRα in the sciatic nerve results in an augmented inflammatory profile of macrophages, which ultimately speed up the development of neuropathic pain and dampen its recovery following nerve injury. Activation of LXRα by its agonist might rebalance the neuroprotective and neurotoxic macrophage phenotypes, and thus alleviate the neuropathic pain behavior.
Collapse
Affiliation(s)
- Zuchao Mao
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ruizhen Huang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jing Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China
- Center for Laboratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruixian Guo
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Munir MT, Ponce C, Santos JM, Sufian HB, Al-Harrasi A, Gollahon LS, Hussain F, Rahman SM. VD 3 and LXR agonist (T0901317) combination demonstrated greater potency in inhibiting cholesterol accumulation and inducing apoptosis via ABCA1-CHOP-BCL-2 cascade in MCF-7 breast cancer cells. Mol Biol Rep 2020; 47:7771-7782. [PMID: 32990902 DOI: 10.1007/s11033-020-05854-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/19/2020] [Indexed: 12/27/2022]
Abstract
Obesity is associated with hypercholesterolemia and is a global epidemic. Epidemiological and animal studies revealed cholesterol is an essential regulator of estrogen receptor positive (ER+) breast cancer progression while inhibition of cholesterol accumulation was found to prevent breast tumor growth. Individually, vitamin D and LXR agonist T0901317 showed anticancer properties. The present study investigated the effects of vitamin D3 (VD3, calcitriol), LXR agonist (T0901317) and a combination of VD3 + T0901317 on cholesterol metabolism and cancer progression in ER+ breast cancer (MCF-7) cells. VD3 or T0901317 alone reduced cholesterol accumulation significantly in MCF-7 cells concomitant with an induction of ABCA1 protein and gene expression compared to the control treatment. Most importantly, VD3 + T0901317 combination showed higher effects in reducing cholesterol levels and increasing ABCA1 protein and gene expression compared to individual treatments. Importantly, VD3 + T0901317 combination showed higher effects in increasing apoptosis as measured by annexin apoptosis assay, cell viability and was associated with induction of CHOP protein and gene expression. Additionally, the VD3 + T0901317 exerted higher effects in reducing antiapoptotic BCL-2 while increased pro-apoptotic BAX gene expression compared to the individual treatments. The present results suggest that VD3 and T0901317 combination may have an important therapeutic application to prevent obesity and hyperlipidemia mediated ER+ breast cancer progression.
Collapse
Affiliation(s)
- Maliha T Munir
- Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | | | | | | | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Lauren S Gollahon
- Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Fazle Hussain
- Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Shaikh Mizanoor Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.
| |
Collapse
|
6
|
Fernandez AGL, Crescenzi B, Pierini V, Di Battista V, Barba G, Pellanera F, Di Giacomo D, Roti G, Piazza R, Adelman ER, Figueroa ME, Mecucci C. A distinct epigenetic program underlies the 1;7 translocation in myelodysplastic syndromes. Leukemia 2019; 33:2481-2494. [PMID: 30923319 DOI: 10.1038/s41375-019-0433-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/23/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
Abstract
The unbalanced translocation dic(1;7)(q10;p10) in myelodysplastic syndromes (MDS) is originated by centromeric juxtaposition resulting into 1q trisomy and 7q monosomy. More than half of cases arise after chemo/radio-therapy. To date, given the absence of genes within the centromeric regions, no specific molecular events have been identified in this cytogenetic subgroup. We performed the first comprehensive genetic and epigenetic analysis of MDS with dic(1;7)(q10;p10) compared to normal controls and therapy-related myeloid neoplasms (t-MNs). RNA-seq showed a unique downregulated signature in dic(1;7) cases, affecting more than 80% of differentially expressed genes. As revealed by pathway and gene ontology analyses, downregulation of ATP-binding cassette (ABC) transporters and lipid-related genes and upregulation of p53 signaling were the most relevant biological features of dic(1;7). Epigenetic supervised analysis revealed hypermethylation at intronic enhancers in the dicentric subgroup, in which low expression levels of enhancer putative target genes accounted for around 35% of the downregulated signature. Enrichment of Krüppel-like transcription factor binding sites emerged at enhancers. Furthermore, a specific hypermethylated pattern on 1q was found to underlie the hypo-expression of more than 50% of 1q-deregulated genes, despite trisomy. In summary, dic(1;7) in MDS establishes a specific transcriptional program driven by a unique epigenomic signature.
Collapse
Affiliation(s)
| | - Barbara Crescenzi
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Valentina Pierini
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Valeria Di Battista
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Gianluca Barba
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Fabrizia Pellanera
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Danika Di Giacomo
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | | | - Rocco Piazza
- Hematology, School of Medicine and Surgery, University of Milano Bicocca, Milano, Italy
| | - Emmalee R Adelman
- Sylvester Comprehensive Cancer Center and Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center and Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy.
| |
Collapse
|
7
|
Jennelle LT, Dandekar AP, Magoro T, Hahn YS. Immunometabolic Signaling Pathways Contribute to Macrophage and Dendritic Cell Function. Crit Rev Immunol 2018; 36:379-394. [PMID: 28605345 DOI: 10.1615/critrevimmunol.2017018803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Understanding of antigen-presenting cell (APC) participation in tissue inflammation and metabolism has advanced through numerous studies using systems biology approaches. Previously unrecognized connections between these research areas have been elucidated in the context of inflammatory disease involving innate and adaptive immune responses. A new conceptual framework bridges APC biology, metabolism, and cytokines in the generation of effective T-cell responses. Exploring these connections is paramount to addressing the rising tide of multi-organ system diseases, particularly chronic diseases associated with metabolic syndrome, infection, and cancer. Focused research in these areas will aid the development of strategies to harness and manipulate innate immunology to improve vaccine development, anti-viral, anti-inflammatory, and anti-tumor therapies. This review highlights recent advances in APC "immunometabolism" specifically related to chronic viral and metabolic disease in humans. The goal of this review is to develop an abridged and consolidated outlook on recent thematic updates to APC immunometabolism in the areas of regulation and crosstalk between metabolic and inflammatory signaling and the integrated stress response and how these signals dictate APC function in providing T-cell activation Signal 3.
Collapse
Affiliation(s)
- Lucas T Jennelle
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Aditya P Dandekar
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Tshifhiwa Magoro
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Young S Hahn
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget 2018; 7:42661-42682. [PMID: 26894976 PMCID: PMC5173165 DOI: 10.18632/oncotarget.7410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
Breast-cancer is heterogeneous and consists of various groups with different biological characteristics. Innovative pharmacological approaches accounting for this heterogeneity are needed. The forty eight human Nuclear-Hormone-Receptors are ligand-dependent transcription-factors and are classified into Endocrine-Receptors, Adopted-Orphan-Receptors (Lipid-sensors and Enigmatic-Orphans) and Orphan-receptors. Nuclear-Receptors represent ideal targets for the design/synthesis of pharmacological ligands. We provide an overview of the literature available on the expression and potential role played by Lipid-sensors, Enigmatic-Orphans and Orphan-Receptors in breast-cancer. The data are complemented by an analysis of the expression levels of each selected Nuclear-Receptor in the PAM50 breast-cancer groups, following re-elaboration of the data publicly available. The major aim is to support the idea that some of the Nuclear-Receptors represent largely unexploited therapeutic-targets in breast-cancer treatment/chemo-prevention. On the basis of our analysis, we conclude that the Lipid-Sensors, NR1C3, NR1H2 and NR1H3 are likely to be onco-suppressors in breast-cancer. The Enigmatic-Orphans, NR1F1 NR2A1 and NR3B3 as well as the Orphan-Receptors, NR0B1, NR0B2, NR1D1, NR2F1, NR2F2 and NR4A3 exert a similar action. These Nuclear-Receptors represent candidates for the development of therapeutic strategies aimed at increasing their expression or activating them in tumor cells. The group of Nuclear-Receptors endowed with potential oncogenic properties consists of the Lipid-Sensors, NR1C2 and NR1I2, the Enigmatic-Orphans, NR1F3, NR3B1 and NR5A2, as well as the Orphan-Receptors, NR2E1, NR2E3 and NR6A1. These oncogenic Nuclear-Receptors should be targeted with selective antagonists, reverse-agonists or agents/strategies capable of reducing their expression in breast-cancer cells.
Collapse
|
9
|
Li M, Qian M, Xu J. Vascular Endothelial Regulation of Obesity-Associated Insulin Resistance. Front Cardiovasc Med 2017; 4:51. [PMID: 28848738 PMCID: PMC5552760 DOI: 10.3389/fcvm.2017.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/27/2017] [Indexed: 12/24/2022] Open
Abstract
Obesity is a worldwide epidemic that predisposes individuals to metabolic complications, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease, all of which are related to an imbalance between food intake and energy expenditure. Identification of the pathogenic molecular mechanisms and effective therapeutic approaches are urgently needed. A well-accepted paradigm is that crosstalk between organs/tissues contributes to diseases. Endothelial dysfunction characterizes metabolic disorders and the related vascular complications. Over the past two decades, overwhelming studies have focused on mechanisms that lead to endothelial dysfunction. New investigations, however, have begun to appreciate the opposite direction of the crosstalk: endothelial regulation of metabolism, although the underlying mechanisms remain to be elucidated. This review summarizes the evidence that supports the concept of endothelial regulation of obesity and the associated insulin resistance in fat, liver, and skeletal muscles, the classic targets of insulin. Outstanding questions and future research directions are highlighted. Identification of the mechanisms of vascular endothelial regulation of metabolism may offer strategies for prevention and treatment of obesity and the related metabolic complications.
Collapse
Affiliation(s)
- Manna Li
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ming Qian
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jian Xu
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
10
|
Fessler MB. The challenges and promise of targeting the Liver X Receptors for treatment of inflammatory disease. Pharmacol Ther 2017; 181:1-12. [PMID: 28720427 DOI: 10.1016/j.pharmthera.2017.07.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Liver X Receptors (LXRs) are oxysterol-activated transcription factors that upregulate a suite of genes that together promote coordinated mobilization of excess cholesterol from cells and from the body. The LXRs, like other nuclear receptors, are anti-inflammatory, inhibiting signal-dependent induction of pro-inflammatory genes by nuclear factor-κB, activating protein-1, and other transcription factors. Synthetic LXR agonists have been shown to ameliorate atherosclerosis and a wide range of inflammatory disorders in preclinical animal models. Although this has suggested potential for application to human disease, systemic LXR activation is complicated by hepatic steatosis and hypertriglyceridemia, consequences of lipogenic gene induction in the liver by LXRα. The past several years have seen the development of multiple advanced LXR therapeutics aiming to avoid hepatic lipogenesis, including LXRβ-selective agonists, tissue-selective agonists, and transrepression-selective agonists. Although several synthetic LXR agonists have made it to phase I clinical trials, none have progressed due to unforeseen adverse reactions or undisclosed reasons. Nonetheless, several sophisticated pharmacologic strategies, including structure-guided drug design, cell-specific drug targeting, as well as non-systemic drug routes have been initiated and remain to be comprehensively explored. In addition, recent studies have identified potential utility for targeting the LXRs during therapy with other agents, such as glucocorticoids and rexinoids. Despite the pitfalls encountered to date in translation of LXR agonists to human disease, it appears likely that this accelerating field will ultimately yield effective and safe applications for LXR targeting in humans.
Collapse
Affiliation(s)
- Michael B Fessler
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
11
|
Speen AM, Kim HYH, Bauer RN, Meyer M, Gowdy KM, Fessler MB, Duncan KE, Liu W, Porter NA, Jaspers I. Ozone-derived Oxysterols Affect Liver X Receptor (LXR) Signaling: A POTENTIAL ROLE FOR LIPID-PROTEIN ADDUCTS. J Biol Chem 2016; 291:25192-25206. [PMID: 27703007 DOI: 10.1074/jbc.m116.732362] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/14/2016] [Indexed: 12/25/2022] Open
Abstract
When inhaled, ozone (O3) interacts with cholesterols of airway epithelial cell membranes or the lung-lining fluid, generating chemically reactive oxysterols. The mechanism by which O3-derived oxysterols affect molecular function is unknown. Our data show that in vitro exposure of human bronchial epithelial cells to O3 results in the formation of oxysterols, epoxycholesterol-α and -β and secosterol A and B (Seco A and Seco B), in cell lysates and apical washes. Similarly, bronchoalveolar lavage fluid obtained from human volunteers exposed to O3 contained elevated levels of these oxysterol species. As expected, O3-derived oxysterols have a pro-inflammatory effect and increase NF-κB activity. Interestingly, expression of the cholesterol efflux pump ATP-binding cassette transporter 1 (ABCA1), which is regulated by activation of the liver X receptor (LXR), was suppressed in epithelial cells exposed to O3 Additionally, exposure of LXR knock-out mice to O3 enhanced pro-inflammatory cytokine production in the lung, suggesting LXR inhibits O3-induced inflammation. Using alkynyl surrogates of O3-derived oxysterols, our data demonstrate adduction of LXR with Seco A. Similarly, supplementation of epithelial cells with alkynyl-tagged cholesterol followed by O3 exposure causes observable lipid-LXR adduct formation. Experiments using Seco A and the LXR agonist T0901317 (T09) showed reduced expression of ABCA1 as compared with stimulation with T0901317 alone, indicating that Seco A-LXR protein adduct formation inhibits LXR activation by traditional agonists. Overall, these data demonstrate that O3-derived oxysterols have pro-inflammatory functions and form lipid-protein adducts with LXR, thus leading to suppressed cholesterol regulatory gene expression and providing a biochemical mechanism mediating O3-derived formation of oxidized lipids in the airways and subsequent adverse health effects.
Collapse
Affiliation(s)
- Adam M Speen
- From the Curriculum in Toxicology, Departments of Pediatrics and Microbiology and Immunology, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Hye-Young H Kim
- the Department of Chemistry and Center for Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Rebecca N Bauer
- From the Curriculum in Toxicology, Departments of Pediatrics and Microbiology and Immunology, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Megan Meyer
- From the Curriculum in Toxicology, Departments of Pediatrics and Microbiology and Immunology, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kymberly M Gowdy
- the Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, and
| | - Michael B Fessler
- the Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kelly E Duncan
- From the Curriculum in Toxicology, Departments of Pediatrics and Microbiology and Immunology, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Wei Liu
- the Department of Chemistry and Center for Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Ned A Porter
- the Department of Chemistry and Center for Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Ilona Jaspers
- From the Curriculum in Toxicology, Departments of Pediatrics and Microbiology and Immunology, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|