1
|
Kumar R, Goel H, Solanki R, Rawat L, Tabasum S, Tanwar P, Pal S, Sabarwal A. Recent developments in receptor tyrosine kinase inhibitors: A promising mainstay in targeted cancer therapy. MEDICINE IN DRUG DISCOVERY 2024; 23:100195. [PMID: 39281823 PMCID: PMC11393807 DOI: 10.1016/j.medidd.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
During the past two decades, significant advances have been made in the discovery and development of targeted inhibitors aimed at improving the survival rates of cancer patients. Among the multitude of potential therapeutic targets identified thus far, Receptor Tyrosine Kinases (RTKs) are of particular importance. Dysregulation of RTKs has been implicated in numerous human diseases, particularly cancer, where aberrant signaling pathways contribute to disease progression. RTKs have a profound impact on intra and intercellular communication, and they also facilitate post-translational modifications, notably phosphorylation, which intricately regulates a multitude of cellular processes. Prolonged phosphorylation or the disruption of kinase regulation may lead to significant alterations in cell signaling. The emergence of small molecule kinase inhibitors has revolutionized cancer therapy by offering a targeted and strategic approach that surpasses the efficacy of traditional chemotherapeutic drugs. Over the last two decades, a plethora of targeted inhibitors have been identified or engineered and have undergone clinical evaluation to enhance the survival rates of cancer patients. In this review, we have compared the expression of different RTKs, including Met, KDR/VEGFR2, EGFR, BRAF, BCR, and ALK across different cancer types in TCGA samples. Additionally, we have summarized the recent development of small molecule inhibitors and their potential in treating various malignancies. Lastly, we have discussed the mechanisms of acquired therapeutic resistance with a focus on kinase inhibitors in EGFR mutant and ALK-rearranged non-small cell lung cancer and BCR-ABL positive chronic myeloid leukemia.
Collapse
Affiliation(s)
- Rahul Kumar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Harsh Goel
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Laxminarayan Rawat
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pranay Tanwar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Akash Sabarwal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Younus S, Vinod Chandra SS, Ibrahim J, Nair ASS. A new approach used in docking study for predicting the combination drug efficacy in EML4-ALK target of NSCLC. J Biomol Struct Dyn 2022:1-17. [PMID: 35822498 DOI: 10.1080/07391102.2022.2091658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Combination drug treatments are usually used in many diseases, including cancers and AIDS. This treatment strategy is known as one of the cornerstone in therapies, which potentially reduces drug toxicity and drug resistance and also enhances therapeutic efficacy. Before using a drug in treatment, several experimental studies are done in vivo and in vitro to ensure the drug's efficacy. In such experimental studies, the drug's efficacy is evaluated with the help of drug dose ratio. In the combination drug experimental studies, the efficacy of the drugs is quantified with the Combination Index (CI) value and then interpreted by various terminologies like synergy, additive, and antagonism. Several computational models have now been invented for the speedy identification of combination drug efficacy. Unfortunately, none of these models have predicted the atomic level interaction of the combination drug with the target protein. This type of intermolecular interaction can be identified with the help of docking software. In the proposed work, we try to identify the intermolecular interaction and efficacy of the combination drug Crzizotinib and Temozolomide in the target of EML4-ALK in NSCLC by in silico study. The result of the study was evaluated with drug properties and Complex Energy (CE) of the docked complex rather than using docking score and binding energy. From this study, we could understand that first, Crizotinib and then after the Temozolomide drug binded on the EML4-ALK protein complex, showed very least CE and also identified that the combination of Crizotinib and Temozolomide drug are more effective in NSCLC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saleena Younus
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, India
| | - S S Vinod Chandra
- Department of Computer Science, University of Kerala, Trivandrum, India
| | - Junaida Ibrahim
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, India
| | - Achuth Sankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, India
| |
Collapse
|
3
|
Lei Y, Lei Y, Shi X, Wang J. EML4‑ALK fusion gene in non‑small cell lung cancer (Review). Oncol Lett 2022; 24:277. [PMID: 35928804 PMCID: PMC9344266 DOI: 10.3892/ol.2022.13397] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor with a high morbidity and mortality rate that is a threat to human health. With the development of molecular targeted research, breakthroughs have been made on the molecular mechanism of lung cancer. The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene is one of the most important pathogenic driver genes of NSCLC discovered thus far. Four generations of targeted drugs for EML4-ALK have been developed, with patients benefiting significantly from these drugs. Therefore, EML4-ALK has become a research hotspot in NSCLC. The aim of the present study is to introduce the current research progress of EML4-ALK and its association with NSCLC.
Collapse
Affiliation(s)
- Yu Lei
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Yan Lei
- Department of Respiratory Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Jingjing Wang
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
4
|
Discovery and preclinical evaluations of WX-0593, a novel ALK inhibitor targeting crizotinib-resistant mutations. Bioorg Med Chem Lett 2022; 66:128730. [PMID: 35421578 DOI: 10.1016/j.bmcl.2022.128730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022]
Abstract
ALK gene rearrangements are oncogenic drivers in approximately 5% of NSCLC. Crizotinib, a first generation ALK inhibitor, is widely prescribed for ALK-positive NSCLC in clinic. Resistance to crizotinib and other ALK inhibitors has been problematic. Addressing resistance, here we describe discovery and development of a novel, proprietary spirocyclic diamine-substituted aryl phosphine oxide series of inhibitors, which led to the identification of WX-0593 (16a) as a potent ALK inhibitor. WX-0593 inhibited the activity of both wild type and resistant mutants of ALK in vitro, showed strong antitumor activity in a crizotinib-resistant mouse PDX model. WX-0593 is currently under development in phase II/III clinical trials.
Collapse
|
5
|
He YZ, Yu SL, Li XN, Bai XH, Li HT, Liu YC, Lv BL, Zhao XM, Wei D, Zhang HL, Li FN, Li G, Li S. Curcumin increases crizotinib sensitivity through the inactivation of autophagy via epigenetic modulation of the miR-142-5p/Ulk1 axis in non-small cell lung cancer. Cancer Biomark 2021; 34:297-307. [PMID: 34957997 DOI: 10.3233/cbm-210282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Drug resistance is a critical factor responsible for the recurrence of non-small cell lung cancer (NSCLC). Previous studies suggest that curcumin acts as a chemosensitizer and radiosensitizer in human malignancies, but the underlying mechanism remains elusive. In the present study, we explored how curcumin regulates the expression of miR-142-5p and sensitizes NSCLC cells to crizotinib. We found that miR-142-5p is significantly downregulated in NSCLC tissue samples and cell lines. Curcumin could increase crizotinib cytotoxicity by epigenetically restoring the expression of miR-142-5p. Furthermore, curcumin treatment suppressed the expression of DNA methylation-related enzymes, including DNMT1, DNMT3A, and DNMT3B, in NSCLC cells. In addition, the upregulation of miR-142-5p expression increased crizotinib cytotoxicity and induced apoptosis in tumor cells in a similar manner to that of curcumin. Strikingly, miR-142-5p overexpression suppressed crizotinib-induced autophagy in A549 and H460 cells. Mechanistically, miR-142-5p inhibited autophagy in lung cancer cells by targeting Ulk1. Overexpression of Ulk1 abrogated the miR-142-5p-induced elevation of crizotinib cytotoxicity in A549 and H460 cells. Collectively, our findings demonstrate that curcumin sensitizes NSCLC cells to crizotinib by inactivating autophagy through the regulation of miR-142-5p and its target Ulk1.
Collapse
Affiliation(s)
- Yu-Zheng He
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shan-Ling Yu
- Department of Medical Intensive Care Unit, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China.,Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao-Ning Li
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xian-Hua Bai
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hai-Tao Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan-Chao Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bao-Lei Lv
- Department of Thoracic Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Xiu-Min Zhao
- Department of The Integrated Treatment of Traditional Chinese and Western Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dong Wei
- Department of Thoracic Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - He-Lin Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fan-Nian Li
- Department of Thoracic Surgery, The First Hospital of XingTai, XingTai, Hebei, China
| | - GuoLei Li
- Department of The First Surgery, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Shuai Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Zhang M, Wang Q, Ke Z, Liu Y, Guo H, Fang S, Lu K. LINC01001 Promotes Progression of Crizotinib-Resistant NSCLC by Modulating IGF2BP2/MYC Axis. Front Pharmacol 2021; 12:759267. [PMID: 34630126 PMCID: PMC8497803 DOI: 10.3389/fphar.2021.759267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Crizotinib is a microtubule-related protein-4-anaplastic lymphoma kinase (EML4-ALK) multi-target tyrosine kinase inhibitor applied in the treatment of ALK-rearranged NSCLC. However, the specific molecular mechanism underlying its therapeutic effect remains unclear. Therefore, the purpose of this research is to explore the mechanism by which crizotinib targets NSCLC with ALK-rearrangement, mainly whether it is related to LINC01001 in regulating NSCLC progression via IGF2BP2/MYC axis. Methods: RT-qPCR is conducted to evaluate the mRNA levels of LINC01001, IGF2BP2 and MYC in A549/R and H1299/R cells. CCK-8 and EdU assays are performed to assess the viability and proliferation of A549/R and H1299/R cells. Western blot is conducted to measure the levels of PCNA and Ki-67 proteins in A549/R and H1299/R cells. FACs and TUNEL are performed to detect apoptosis of A549/R and H1299/R cells. Immunohistochemical staining is performed to assess the levels of Ki67 in crizotinib-resistant NSCLC tissue. Bioinformatics analysis of multiple CLIP (crosslinking-immunoprecipitation) data found potential binding sites between LINC01001 and IGF2BP2, IGF2BP2 and MYC, that are confirmed by RIP assay and RNA pulldown assay. Results: Our findings illustrated that LINC01001 is highly expressed in crizotinib-resistant NSCLC cells and associated with poor overall survival of NSCLC patients. Inhibition of LINC01001 depresses crizotinib resistance of NSCLC cells. LINC01001 interacts with IGF2BP2, and inhibition of IGF2BP2 depresses crizotinib resistance of NSCLC cells. IGF2BP2 interacts with the mRNA of MYC, and LINC01001 overexpression increases crizotinib resistance of NSCLC via MYC. Conclusion: LINC01001 promotes the progression of crizotinib-resistant NSCLC by modulating the IGF2BP2/MYC axis. Our research clarifies the specific mechanism of crizotinib-resistance in NSCLC treatment.
Collapse
Affiliation(s)
- Meiling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihao Ke
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yijing Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huijin Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shencun Fang
- Department of Respiratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Kaihua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Therapeutic Targeting of the Gas6/Axl Signaling Pathway in Cancer. Int J Mol Sci 2021; 22:ijms22189953. [PMID: 34576116 PMCID: PMC8469858 DOI: 10.3390/ijms22189953] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022] Open
Abstract
Many signaling pathways are dysregulated in cancer cells and the host tumor microenvironment. Aberrant receptor tyrosine kinase (RTK) pathways promote cancer development, progression, and metastasis. Hence, numerous therapeutic interventions targeting RTKs have been actively pursued. Axl is an RTK that belongs to the Tyro3, Axl, MerTK (TAM) subfamily. Axl binds to a high affinity ligand growth arrest specific 6 (Gas6) that belongs to the vitamin K-dependent family of proteins. The Gas6/Axl signaling pathway has been implicated to promote progression, metastasis, immune evasion, and therapeutic resistance in many cancer types. Therapeutic agents targeting Gas6 and Axl have been developed, and promising results have been observed in both preclinical and clinical settings when such agents are used alone or in combination therapy. This review examines the current state of therapeutics targeting the Gas6/Axl pathway in cancer and discusses Gas6- and Axl-targeting agents that have been evaluated preclinically and clinically.
Collapse
|
8
|
Pan T, Dan Y, Guo D, Jiang J, Ran D, Zhang L, Tian B, Yuan J, Yu Y, Gan Z. Discovery of 2,4-pyrimidinediamine derivatives as potent dual inhibitors of ALK and HDAC. Eur J Med Chem 2021; 224:113672. [PMID: 34237620 DOI: 10.1016/j.ejmech.2021.113672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
Combination of anaplastic lymphoma kinase (ALK) inhibitor with histone deacetylases (HDAC) inhibitor could exert synergistically anti-proliferative effects on ALK positive non-small cell lung cancer (NSCLC) naïve or resistant cells. In this work, we designed and synthesized a series of 2,4-pyrimidinediamine derivatives as dual ALK and HDAC inhibitors based on pharmacophore merged strategy. Among which, compound 10f displayed the most potent and balanced inhibitory activity against ALK (IC50 = 2.1 nM) and HDAC1 (IC50 = 7.9 nM), respectively. In particular, 10f was also potent against the frequently observed Crizotinib-resistant ALKL1196M (IC50 = 1.7 nM) as well as the Ceritinib-resistant ALKG1202R (IC50 = 0.4 nM) mutants. In antiproliferative activity assay, 10f exhibited impressive activity on ALK-addicted cancer cell lines at low micromole concentrations, which was comparable to that of Crizotinib and Ceritinib. Further flow cytometric analysis indicated that 10f could effectively induce cell death via cell apoptosis and cell cycle arrest. Taken together, these results suggested 10f would be a promising lead compound for the ALK-positive NSCLC treatment, especially the Ceritinib- or Crizotinib-resistant NSCLC.
Collapse
Affiliation(s)
- Tao Pan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanrong Dan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Dafeng Guo
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Junhao Jiang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China; Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Dongzhi Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China; Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Zhang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Binghua Tian
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianyong Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China; Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Yu Yu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China; Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, PR China.
| | - Zongjie Gan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China; Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
9
|
NPM-ALK: A Driver of Lymphoma Pathogenesis and a Therapeutic Target. Cancers (Basel) 2021; 13:cancers13010144. [PMID: 33466277 PMCID: PMC7795840 DOI: 10.3390/cancers13010144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anaplastic lymphoma kinase (ALK) is a tyrosine kinase associated with Anaplastic Large Cell lymphoma (ALCL) through oncogenic translocations mainly NPM-ALK. Chemotherapy is effective in ALK(+) ALCL patients and induces remission rates of approximately 80%. The remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. Different classes of ALK tyrosine kinase inhibitors (TKI) are available but used exclusively for EML4-ALK (+) lung cancers. The significant toxicities of most ALK inhibitors explain the delay in their use in pediatric ALCL patients. Some ALCL patients do not respond to the first generation TKI or develop an acquired resistance. Combination therapy with ALK inhibitors in ALCL is the current challenge. Abstract Initially discovered in anaplastic large cell lymphoma (ALCL), the ALK anaplastic lymphoma kinase is a tyrosine kinase which is affected in lymphomas by oncogenic translocations, mainly NPM-ALK. To date, chemotherapy remains a viable option in ALCL patients with ALK translocations as it leads to remission rates of approximately 80%. However, the remaining patients do not respond to chemotherapy and some patients have drug-resistant relapses. It is therefore crucial to identify new and better treatment options. Nowadays, different classes of ALK tyrosine kinase inhibitors (TKI) are available and used exclusively for EML4-ALK (+) lung cancers. In fact, the significant toxicities of most ALK inhibitors explain the delay in their use in ALCL patients, who are predominantly children. Moreover, some ALCL patients do not respond to Crizotinib, the first generation TKI, or develop an acquired resistance months following an initial response. Combination therapy with ALK inhibitors in ALCL is the current challenge.
Collapse
|
10
|
Poddubskaya E, Bondarenko A, Boroda A, Zotova E, Glusker A, Sletina S, Makovskaia L, Kopylov P, Sekacheva M, Moisseev A, Baranova M. Transcriptomics-Guided Personalized Prescription of Targeted Therapeutics for Metastatic ALK-Positive Lung Cancer Case Following Recurrence on ALK Inhibitors. Front Oncol 2019; 9:1026. [PMID: 31681574 PMCID: PMC6803543 DOI: 10.3389/fonc.2019.01026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the major cause of cancer-associated mortality. Identification of rearrangements in anaplastic lymphoma kinase (ALK) gene is an effective instrument for more effective targeted therapy of NSCLC using ALK inhibitors dramatically raising progression-free survival in the ALK-mutated group of patients. However, the tumors frequently develop resistance to ALK inhibitors. We describe here a case of 48 y.o. male patient with ALK-positive NSCLC who was clinically managed for 6.5 years from the diagnosis. The tumor was surgically resected, but 8 months later multiple brain metastases were discovered. The patient started receiving platinum-based chemotherapy and then was enrolled in a clinical trial of second-generation ALK inhibitor ceritinib, which resulted in a 21 months stabilization. Following disease relapse, the patient was successfully managed for 33 months with different lines of chemo- and local ablative therapies. Chemotherapy regimens, including off-label combination of crizotinib + bevacizumab + docetaxel, were selected using the cancer transcriptome data-guided bioinformatical decision support system Oncobox. These therapies led to additional stabilization for 22 months. Survival of our patient after developing resistance to ALK inhibitor was longer for 16 months than previously reported average survival for such cases. This case shows that transcriptomic-guided sequential personalized prescription of targeted therapies can be effective in terms of survival and quality of life in ALK-mutated NSCLC.
Collapse
Affiliation(s)
- Elena Poddubskaya
- Clinical Center Vitamed, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Alexander Boroda
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Evgenia Zotova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alex Glusker
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Luidmila Makovskaia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Philipp Kopylov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,FSBEI FPE Russian Medical Academy of Continuing Professional Education MOH, Moscow, Russia
| | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexey Moisseev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Madina Baranova
- Clinical Center Vitamed, Moscow, Russia.,FSBEI FPE Russian Medical Academy of Continuing Professional Education MOH, Moscow, Russia
| |
Collapse
|
11
|
Sun S, Jin S, Guo R. [Role of STAT3 in Resistance of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:457-463. [PMID: 31315785 PMCID: PMC6712271 DOI: 10.3779/j.issn.1009-3419.2019.07.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
近年来,肿瘤炎症微环境对非小细胞肺癌(non-small cell lung cancer, NSCLC)耐药影响的机制研究刚刚起步,信号传导及转录激活因子3(signal transducers and activators of transcription 3, STAT3)作为连接炎症和肿瘤的关键信号通路分子,其活化可引起肿瘤细胞中诸多基因沉默、表达异常及基因的不稳定等,诱导化疗、靶向药物治疗耐药,有望成为潜在的逆转耐药的新靶点。本综述阐述了STAT3在NSCLC获得性耐药中的研究进展,以探讨其作为逆转耐药新靶点的可能性,为NSCLC获得性耐药的临床治疗新策略提供理论依据。
Collapse
Affiliation(s)
- Sibo Sun
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shidai Jin
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Renhua Guo
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
12
|
Lin XR, Zhou XL, Feng Q, Pan XY, Song SL, Fang H, Lei J, Yang JL. CIK cell-based delivery of recombinant adenovirus KGHV500 carrying the anti-p21Ras scFv gene enhances the anti-tumor effect and safety in lung cancer. J Cancer Res Clin Oncol 2019; 145:1123-1132. [PMID: 30796510 DOI: 10.1007/s00432-019-02857-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Adenovirus (Ads) is one of the most popular vectors used in gene therapy for the treatment of cancer. However, systemic therapy is limited by circulating antiviral antibodies and poor viral delivery in vivo. In this study, we used cytokine-induced killer (CIK) cells as delivery vehicles of Ads KGHV500 carrying the anti-p21Ras scFv gene to treat Ras gene-related lung cancer and investigate the anti-tumor effect in vitro and in vivo. METHODS The human lung cancer cell line A549 was employed to investigate the anti-tumor activity of recombinant Ads KGHV500 harboring the anti-p21Ras scFv gene using MTT, wound healing, transwell invasion, and apoptosis assays in vitro. Next, CIK cells were used as delivery vehicles to deliver KGHV500 carrying the anti-p21Ras scFv gene to treat A549-transplanted tumors in nude mice, and viral replication, p21Ras scFv expression, and the therapeutic efficacy were assessed. RESULTS In vitro studies showed that KGHV500 had potent anti-tumor activity. In addition, in vivo, this combination therapy significantly inhibited the growth of lung cancer xenografts compared with mice treated with KGHV500 alone. KGHV500 and anti-p21Ras scFv were observed in tumor tissue, but were nearly undetectable in normal tissues. CONCLUSIONS The co-delivery of anti-p21Ras scFv by CIK cells and KGHV500 could increase the anti-tumor effect and safety, and possess considerable advantages for the treatment of Ras-related cancer.
Collapse
Affiliation(s)
- Xin-Rui Lin
- Graduate School, Kunming Medical University, Chenggong District, Kunming, People's Republic of China.,Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, 212 Daguan Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Xin-Liang Zhou
- Department of Pathology, Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Qiang Feng
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, 212 Daguan Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Xin-Yan Pan
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, 212 Daguan Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Shu-Ling Song
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, 212 Daguan Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Hong Fang
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, 212 Daguan Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Jin Lei
- Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, 212 Daguan Road, Kunming, 650032, Yunnan, People's Republic of China
| | - Ju-Lun Yang
- Graduate School, Kunming Medical University, Chenggong District, Kunming, People's Republic of China. .,Department of Pathology, 920th Hospital of the Joint Logistics Support Force of PLA, 212 Daguan Road, Kunming, 650032, Yunnan, People's Republic of China. .,Department of Pathology, Medical Faculty, Kunming University of Science and Technology, Kunming, People's Republic of China.
| |
Collapse
|
13
|
Chen H, Zhang Q, Zhang Y, Jia B, Zhang B, Wang C. Afatinib reverses ceritinib resistance (CR) in ALK/ROS1-positive non-small-cell lung cancer cell (NSCLC) via suppression of NRG1 pathway. Onco Targets Ther 2018; 11:8201-8209. [PMID: 30568455 PMCID: PMC6267764 DOI: 10.2147/ott.s173008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lung cancer (LC) is the most prevalent malignancy worldwide, and non-small-cell LC (NSCLC) cell is associated with high mortality. As a member of the second generation of anaplastic lymphoma kinase (ALK) suppressors, ceritinib has considerable therapeutic effects for ALK and c-ros oncogene 1 (ROS1)-positive NSCLC cell. Nevertheless, patients inevitably develop resistance to the drug. Our research focused on the exploration of whether afatinib was able to counteract ceritinib resistance (CR) in NSCLC cells with positive ALK or ROS1. MATERIALS AND METHODS Acquired CR cell sublines (HCC78R and H1299R) were induced by stepwise escalation of ceritinib exposure. MTT assay was used to validate cell proliferation. Fluorescence assay was performed for apoptosis analysis. Quantitative real-time PCR and Western blot assays were used to assess the alterations of signaling pathway-related mRNA and proteins, respectively. RESULTS We found that prolonged treatment of HCC78 and H1299 with ceritinib brought about 10 times weaker ceritinib sensitivity (CS) in comparison with parent cells. Additionally, the results showed that afatinib efficiently promoted CS, which was evidenced as reduced proliferation and cell death promotion, in NSCLC cells, irrespective of their previous sensitivity or resistance to ceritinib. Moreover, afatinib decreased neuregulin-1 (NRG1) signaling stimulation in CR as well as CS cells. Furthermore, supplementing NRG1 in H1299 and HCC78 cells triggered CR, which was attenuated by afatinib. CONCLUSION These results demonstrated that afatinib overcame CR in NSCLC cells with positive ALK or ROS1 by inhibiting the NRG1 signaling pathway, which might be a promising therapeutic approach.
Collapse
Affiliation(s)
- Hui Chen
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China,
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China,
- Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China,
- Tianjin Lung Cancer Center, Tianjin, People's Republic of China,
| | - Qiang Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China,
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China,
- Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China,
- Tianjin Lung Cancer Center, Tianjin, People's Republic of China,
| | - Yu Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China,
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China,
- Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China,
- Tianjin Lung Cancer Center, Tianjin, People's Republic of China,
| | - Bin Jia
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China,
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China,
- Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China,
- Tianjin Lung Cancer Center, Tianjin, People's Republic of China,
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China,
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China,
- Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China,
- Tianjin Lung Cancer Center, Tianjin, People's Republic of China,
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China,
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China,
- Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China,
- Tianjin Lung Cancer Center, Tianjin, People's Republic of China,
| |
Collapse
|
14
|
Vavalà T, Novello S. Alectinib in the treatment of ALK-positive non-small cell lung cancer: an update on its properties, efficacy, safety and place in therapy. Ther Adv Med Oncol 2018; 10:1758835918789364. [PMID: 30090122 PMCID: PMC6077883 DOI: 10.1177/1758835918789364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/19/2018] [Indexed: 01/01/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) rearrangement is identified in 3–7% of advanced non-small cell lung cancer (NSCLC) cases, and ALK tyrosine kinase inhibitors (TKIs) have revolutionized the management of this subset of NSCLC patients. ALK–TKIs have been proven highly effective in ALK-rearranged advanced NSCLC patients, but after initial responses and benefit, a subsequent progression inevitably occurs. Understanding acquired-resistance mechanisms and defining an appropriate algorithm is becoming even more essential, particularly considering the availability of extremely efficacious next-generation ALK inhibitors. The aim of this review is the analysis of current data about ALK inhibition as a therapeutic strategy in ALK-rearranged NSCLC management, with a focus on a specific ALK–TKI, alectinib. Alectinib is a highly selective inhibitor of ALK and showed systemic and central nervous system (CNS) efficacy in the treatment of this particular population. The change of first-line approach, and consequently of further lines of therapy, in ALK-rearranged NSCLC patients is still a matter of debate. A summary of evidence from randomized trials evaluating alectinib will be presented in order to discuss the available clinical evidence, safety and place in therapy.
Collapse
Affiliation(s)
- Tiziana Vavalà
- SC of Oncology at ASL CN1, Ospedale Civile di Saluzzo, Cuneo, Italy
| | - Silvia Novello
- Department of Oncology, University of Torino, AOU S. Luigi Gonzaga, Regione Gonzole 10, Orbassano (TO), Turin, Orbassano 10043, Italy
| |
Collapse
|
15
|
Zaman A, Bivona TG. Emerging application of genomics-guided therapeutics in personalized lung cancer treatment. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:160. [PMID: 29911108 DOI: 10.21037/atm.2018.05.02] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In lung cancer, genomics-driven comprehensive molecular profiling has identified novel chemically and immunologically addressable vulnerabilities, resulting in an increasing application of precision medicine by targeted inactivation of tumor oncogenes and immunogenic activation of host anti-tumor surveillance as modes of treatment. However, initially profound response of these targeted therapies is followed by relapse due to therapy-resistant residual disease states. Although distinct mechanisms and frameworks for therapy resistance have been proposed, accounting for and upfront prediction of resistance trajectories has been challenging. In this review, we discuss in both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), the current standing, and challenges associated with genomics-guided strategies for personalized therapy against both oncogenic alterations as well as post-therapy resistance mechanisms. In NSCLC, we catalog the targeted therapy approaches against most notable oncogenic alterations such as epidermal growth factor receptor (EGFR), serine/threonine-protein kinase b-raf (BRAF), Kirsten rat sarcoma viral proto-oncogene (KRAS), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1). For SCLC, currently highly recalcitrant to targeted therapy, we enumerate a range of exciting and maturing precision medicine approaches. Furthermore, we discuss a number of immunotherapy approaches, in combination or alone, that are being actively pursued clinically in lung cancer. This review not only highlights common mechanistic themes underpinning different classes of resistance and discusses tumor heterogeneity as a source of residual disease, but also discusses potential ways to overcome these barriers. We emphasize how an extensive understanding of these themes can predict and improve therapeutic strategies, such as through poly-therapy approaches, to forestall tumor evolution upfront.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Department of Medicine, University of California, San Francisco, CA, USA.,UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, USA.,UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
16
|
Xie C, Wan X, Quan H, Zheng M, Fu L, Li Y, Lou L. Preclinical characterization of anlotinib, a highly potent and selective vascular endothelial growth factor receptor-2 inhibitor. Cancer Sci 2018; 109:1207-1219. [PMID: 29446853 PMCID: PMC5891194 DOI: 10.1111/cas.13536] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/22/2022] Open
Abstract
Abrogating tumor angiogenesis by inhibiting vascular endothelial growth factor receptor‐2 (VEGFR2) has been established as a therapeutic strategy for treating cancer. However, because of their low selectivity, most small molecule inhibitors of VEGFR2 tyrosine kinase show unexpected adverse effects and limited anticancer efficacy. In the present study, we detailed the pharmacological properties of anlotinib, a highly potent and selective VEGFR2 inhibitor, in preclinical models. Anlotinib occupied the ATP‐binding pocket of VEGFR2 tyrosine kinase and showed high selectivity and inhibitory potency (IC50 <1 nmol/L) for VEGFR2 relative to other tyrosine kinases. Concordant with this activity, anlotinib inhibited VEGF‐induced signaling and cell proliferation in HUVEC with picomolar IC50 values. However, micromolar concentrations of anlotinib were required to inhibit tumor cell proliferation directly in vitro. Anlotinib significantly inhibited HUVEC migration and tube formation; it also inhibited microvessel growth from explants of rat aorta in vitro and decreased vascular density in tumor tissue in vivo. Compared with the well‐known tyrosine kinase inhibitor sunitinib, once‐daily oral dose of anlotinib showed broader and stronger in vivo antitumor efficacy and, in some models, caused tumor regression in nude mice. Collectively, these results indicate that anlotinib is a well‐tolerated, orally active VEGFR2 inhibitor that targets angiogenesis in tumor growth, and support ongoing clinical evaluation of anlotinib for a variety of malignancies.
Collapse
Affiliation(s)
- Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaozhe Wan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haitian Quan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyue Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yun Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Zhu Z, Chai Y. Crizotinib resistance overcome by ceritinib in an ALK-positive non-small cell lung cancer patient with brain metastases: A case report. Medicine (Baltimore) 2017; 96:e8652. [PMID: 29137103 PMCID: PMC5690796 DOI: 10.1097/md.0000000000008652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE The treatment of non-small cell lung cancer (NSCLC) has now changed dramatically in recent years and anaplastic lymphoma receptor tyrosine kinase (ALK) inhibitors are developing rapidly. PATIENT CONCERNS Here we reported a 57-year-old ALK-positive NSCLC man with brain metastases. DIAGNOSES A case of lung adenocarcinoma with brain metastases. INTERVENTIONS Crizotinib was administered orally at a dose of 250mg twice a day until the brain metastases were found. Treatment with orally administered ceritinib at a dose of 450mg/d was initiated after crizotinib treatment. OUTCOMES The patient is currently receiving maintenance ceritinib treatment, with no evidence of extracranial or intracranial tumor progression for 25 months. LESSONS Ceritinib may be a good choice for ALK-positive NSCLC patients with brain metastases who acquire resistance to crizotinib.
Collapse
|
18
|
Kay M, Dehghanian F. Exploring the crizotinib resistance mechanism of NSCLC with the L1196M mutation using molecular dynamics simulation. J Mol Model 2017; 23:323. [PMID: 29067524 DOI: 10.1007/s00894-017-3495-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
Crizotinib is an anticancer tyrosine kinase inhibitor that is approved for use as a first-line treatment for some non-small-cell lung cancers. L1196M is the most frequently observed mutation in NSCLC patients. This mutation, known as the gatekeeper mutation in the ALK kinase domain, confers resistance to crizotinib by sterically blocking the binding of the drug. However, the molecular mechanism of crizotinib resistance caused by the L1196M mutation is still unclear. Molecular dynamics simulation was therefore utilized in this study to investigate the mechanism by which the L1196M mutation may affect crizotinib resistance. Our results suggest that larger fluctuations in some important regions of the mutant complex compared to the wild-type complex may contribute to the resistance of the mutant complex to crizotinib. Also, mutation-induced alterations to the secondary structure of the complex as well as unstable hydrogen-bonding patterns in the A-loop and P-loop regions decrease the total binding energy of the complex. This study therefore provides a molecular explanation for the resistance to crizotinib caused by the L1196M mutation, which could aid the design of more efficient and selective drugs.
Collapse
Affiliation(s)
- Maryam Kay
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
| | - Fariba Dehghanian
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Islamic Republic of Iran
| |
Collapse
|
19
|
Ye Z, Fang B, Pan J, Zhang N, Huang J, Xie C, Lou T, Cao Z. miR-138 suppresses the proliferation, metastasis and autophagy of non-small cell lung cancer by targeting Sirt1. Oncol Rep 2017; 37:3244-3252. [PMID: 28498463 PMCID: PMC5442395 DOI: 10.3892/or.2017.5619] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/11/2017] [Indexed: 01/18/2023] Open
Abstract
The present study determined the role and mechanism of miR-138 in non-small cell lung cancer (NSCLC). In total, 45 freshly resected clinical NSCLC tissues were collected. The expression of miR-138 in tissues and cell lines were determined by real-time quantitative PCR. miR-138 mimics were transfected into A549 and Calu-3 cells in vitro, and then the effects of miR-138 on lung cancer cell proliferation, cell cycle, invasion and metastasis were investigated by CCK-8 assay, Transwell and flow cytometry, respectively. The protein expression of the potential target gene Sirt1 in lung cancer cells were determined by western blot analysis. Dual-Luciferase reporter assay was performed to further confirm whether Sirt1 was the target gene of miR-138. The expression of miR-138 was significantly lower in lung cancer tissues and was negatively correlated to the differentiation degree and lymph node metastasis of lung cancer. In vitro experiment results showed that miR-138 inhibited lung cancer cell proliferation, invasion and migration. It was verified that miR-138 could downregulate Sirt1 protein expression, inhibit epithelial-mesenchymal transition (EMT), decrease the activity of AMPK signaling pathway and elevate mTOR phosphorylation level. Dual-Luciferase reporter assay demonstrated that miR-138 could directly regulate Sirt1. Downregulation of Sirt1 alone can also cause the same molecular and biological function changes. Western blot analysis and confocal microscopy results indicated that overexpression of miR-138 or interference of Sirt1 expression could inhibit lung cancer cell autophagy activity possibly through AMPK-mTOR signaling pathway. miR-138 plays a tumor suppressor function in lung cancer. It may inhibit the proliferation, invasion and migration of lung cancer through downregulation of Sirt1 expression and activation of cell autophagy. The downregulation of miR-138 is closely related to the development of lung cancer.
Collapse
Affiliation(s)
- Zaiting Ye
- The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang 323000, P.R. China
| | - Bingmu Fang
- The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang 323000, P.R. China
| | - Jiongwei Pan
- The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang 323000, P.R. China
| | - Ning Zhang
- The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang 323000, P.R. China
| | - Jinwei Huang
- The Central Hospital of Lishui City, Lishui, Zhejiang 323000, P.R. China
| | - Congying Xie
- The First Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Tianzheng Lou
- The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang 323000, P.R. China
| | - Zhuo Cao
- The Sixth Affiliated Hospital of Wenzhou Medical University/Lishui People's Hospitlal, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
20
|
Wang L, Wang H, Song D, Xu M, Liebmen M. New strategies for targeting drug combinations to overcome mutation-driven drug resistance. Semin Cancer Biol 2016; 42:44-51. [PMID: 27840276 DOI: 10.1016/j.semcancer.2016.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022]
Abstract
Targeted therapies are suggested as an effective alternative for patients with cancer that harbor mutations, but treatment outcomes are frequently limited by primary or acquired drug resistance. The present review describes potential mechanisms of primary or acquired drug resistances to provide a resource for considering how to be overcome. We focus on strategies of targeted drug combinations to minimize the development of drug resistance within the context how resistance develops. Strategies benefit from the combined use of "omics" technologies, i.e., high-throughput functional genomics data, pharmacogenomics, or genome-wide CRISPR-Cas9 screening, to analyze and design targeted drug combinations for mutation-driven drug resistance. We also introduce new insights towards pathway-centric combined therapies as an alternative to overcome the heterogeneity and benefit patient prognoses.
Collapse
Affiliation(s)
- Linyan Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Biomedical Research Center, Shanghai, China.
| | - Haiyun Wang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Dongli Song
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Biomedical Research Center, Shanghai, China
| | - Menglin Xu
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Biomedical Research Center, Shanghai, China
| | - Michael Liebmen
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Institute of Clinical Bioinformatics, Biomedical Research Center, Shanghai, China.
| |
Collapse
|