1
|
Han R, Luo L, Wei C, Qiao Y, Xie J, Pan X, Xing J. Stiffness-tunable biomaterials provide a good extracellular matrix environment for axon growth and regeneration. Neural Regen Res 2025; 20:1364-1376. [PMID: 39075897 PMCID: PMC11624885 DOI: 10.4103/nrr.nrr-d-23-01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 03/16/2024] [Indexed: 07/31/2024] Open
Abstract
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix-a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
Collapse
Affiliation(s)
- Ronglin Han
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Lanxin Luo
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Caiyan Wei
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yaru Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jiming Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xianchao Pan
- Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
2
|
Gao J, Zhou Y, Xu G, Wei Z, Ding L, Zhang W, Huang Y. Hybrid hydrogels containing gradients in gold nanoparticles for localized delivery of mesenchymal stem cells and enhanced nerve tissues remodeling in vivo. Mater Today Bio 2025; 30:101411. [PMID: 39811605 PMCID: PMC11730570 DOI: 10.1016/j.mtbio.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Currently, most peripheral nerve injuries are incurable mainly due to excessive reactive oxygen species (ROS) generation in inflammatory tissues, which can further exacerbate localized tissue injury and cause chronic diseases. Although promising for promoting nerve regeneration, stem cell therapy still suffers from abundant intrinsic limitations, mainly including excessive ROS in lesions and inefficient production of growth factors (GFs). Biomaterials that scavenge endogenous ROS and promote GFs secretion might overcome such limitations and thus are being increasingly investigated. Herein, firstly reported as specific ROS scavenging agents and paracrine stimulators, gold nanoparticles (GNPs) were incorporated in the chitosan/polyvinyl alcohol hydrogel networks. The GNPs/hydrogel composite can support the survival of mesenchymal stem cells (MSCs) with excellent expansion efficiency and protect MSCs in a simulated ROS microenvironment, decreasing the intracellular ROS levels and simultaneously enhancing cell viability. Moreover, biodegradable scaffolds, along with MSCs, were implanted into sciatic nerve defects in a rat model to show good application value in vivo. Our work demonstrated that the GNPs/hydrogel shows great promise in MSCs therapy for peripheral nerve injury with convincing biological evidence.
Collapse
Affiliation(s)
- Jie Gao
- Department of Urology, Jiangnan University Affiliated Hospital, Medical College of Jiangnan University, Wuxi 214125, China
| | - Yiduo Zhou
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210003, China
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin 14195, Germany
| | - Gang Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Zhongqing Wei
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210003, China
| | - Liucheng Ding
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, Nanjing Medical University, Nanjing 210003, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Yi Huang
- Department of Urology, Jiangnan University Affiliated Hospital, Medical College of Jiangnan University, Wuxi 214125, China
| |
Collapse
|
3
|
Duan J, Li H, Zhang J, Xu H, Gao J, Cai M, Pan Y, Shi Y, Wang H. PIEZO1 Affects Cell Growth and Migration via Microfilament-Mediated YAP trans-Latitudinal Regulation. Anal Chem 2025; 97:147-156. [PMID: 39729436 DOI: 10.1021/acs.analchem.4c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Environmental mechanical forces, such as cell membrane stress, cell extrusion, and stretch, have been proven to affect cell growth and migration. Piezo1, a mechanosensitive channel protein, responds directly to endogenous or exogenous mechanical stimuli. Here, we explored the Piezo1 distribution and microfilament morphological changes induced by mechanical forces in the tumor and normal cells. In addition, Piezo1 activation in tumor cells resulted in the nuclear accumulation of YAP, whereas nuclear export of YAP and microfilament depolymerization occurred with the prolonged activation, while a removal stimulation restored the YAP distribution and microfilament polymerization. Combining the morphological changes of the microfilament under Piezo1 activation and the function of YAP in regulating cell growth and development, we suggest that Piezo1 senses changes in environmental mechanical forces and regulates YAP distribution through the microfilament cytoskeleton network, which in turn affects the growth and migration more obviously in tumor cells rather than normal cells. Our results are essential for understanding the trans-latitudinal transmission of mechanical forces and exploring the role of environmental mechanical forces in tumor therapy.
Collapse
Affiliation(s)
- Jiawei Duan
- University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongru Li
- University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jinrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yangang Pan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongda Wang
- University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
4
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hooman Fallahi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104 USA
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Maurice N. Collins
- School of Engineering, Bernal Institute and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 16635-148, Iran
| | - Hermann Seitz
- Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
5
|
Xie C, Chen Y, Wang L, Liao K, Xue B, Han Y, Li L, Jiang Q. Recent research of peptide-based hydrogel in nervous regeneration. Bioact Mater 2024; 40:503-523. [PMID: 39040568 PMCID: PMC11261279 DOI: 10.1016/j.bioactmat.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Neurological disorders exert significantly affect the quality of life for patients, necessitating effective strategies for nerve regeneration. Both traditional autologous nerve transplantation and emerging therapeutic approaches encounter scientific challenges due to the complex nature of the nervous system and the unsuitability of the surrounding environment for cell transplantation. Tissue engineering techniques offer a promising path for neurotherapy. Successful neural tissue engineering relies on modulating cell differentiation behavior and tissue repair by developing biomaterials that mimic the natural extracellular matrix (ECM) and establish a three-dimensional microenvironment. Peptide-based hydrogels have emerged as a potent option among these biomaterials due to their ability to replicate the structure and complexity of the ECM. This review aims to explore the diverse range of peptide-based hydrogels used in nerve regeneration with a specific focus on dipeptide hydrogels, tripeptide hydrogels, oligopeptide hydrogels, multidomain peptides (MDPs), and amphiphilic peptide hydrogels (PAs). Peptide-based hydrogels offer numerous advantages, including biocompatibility, structural diversity, adjustable mechanical properties, and degradation without adverse effects. Notably, hydrogels formed from self-assembled polypeptide nanofibers, derived from amino acids, show promising potential in engineering neural tissues, outperforming conventional materials like alginate, poly(ε-caprolactone), and polyaniline. Additionally, the simple design and cost-effectiveness of dipeptide-based hydrogels have enabled the creation of various functional supramolecular structures, with significant implications for nervous system regeneration. These hydrogels are expected to play a crucial role in future neural tissue engineering research. This review aims to highlight the benefits and potential applications of peptide-based hydrogels, contributing to the advancement of neural tissue engineering.
Collapse
Affiliation(s)
- Chunmei Xie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yueyang Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lang Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kin Liao
- Advanced Digital and Additive Manufacturing Center, Khalifa University of Science and Technology, Po Box 127788, Abu Dhabi, United Arab Emirates
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, China
| | - Yulong Han
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Yang Q, Xu M, Fang H, Gao Y, Zhu D, Wang J, Chen Y. Targeting micromotion for mimicking natural bone healing by using NIPAM/Nb 2C hydrogel. Bioact Mater 2024; 39:41-58. [PMID: 38800718 PMCID: PMC11127186 DOI: 10.1016/j.bioactmat.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Natural fracture healing is most efficient when the fine-tuned mechanical force and proper micromotion are applied. To mimick this micromotion at the fracture gap, a near-infrared-II (NIR-II)-activated hydrogel was fabricated by integrating two-dimensional (2D) monolayer Nb2C nanosheets into a thermally responsive poly(N-isopropylacrylamide) (NIPAM) hydrogel system. NIR-II-triggered deformation of the NIPAM/Nb2C hydrogel was designed to generate precise micromotion for co-culturing cells. It was validated that micromotion at 1/300 Hz, triggering a 2.37-fold change in the cell length/diameter ratio, is the most favorable condition for the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Moreover, mRNA sequencing and verification revealed that micromotion-induced augmentation was mediated by Piezo1 activation. Suppression of Piezo1 interrupts the mechano-sensitivity and abrogates osteogenic differentiation. Calvarial and femoral shaft defect models were established to explore the biocompatibility and osteoinductivity of the Micromotion Biomaterial. A series of research methods, including radiography, micro-CT scanning, and immunohistochemical staining have been performed to evaluate biosafety and osteogenic efficacy. The in vivo results revealed that tunable micromotion strengthens the natural fracture healing process through the sequential activation of endochondral ossification, promotion of neovascularization, initiation of mineral deposition, and combinatory acceleration of full-thickness osseous regeneration. This study demonstrated that Micromotion Biomaterials with controllable mechanophysical characteristics could promote the osteogenic differentiation of BMSCs and facilitate full osseous regeneration. The design of NIPAM/Nb2C hydrogel with highly efficient photothermal conversion, specific features of precisely controlled micromotion, and bionic-mimicking bone-repair capabilities could spark a new era in the field of regenerative medicine.
Collapse
Affiliation(s)
- Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Mengqiao Xu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jing Wang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
7
|
Hwang HS, Lee CS. Nanoclay-Composite Hydrogels for Bone Tissue Engineering. Gels 2024; 10:513. [PMID: 39195042 DOI: 10.3390/gels10080513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Nanoclay-composite hydrogels represent a promising avenue for advancing bone tissue engineering. Traditional hydrogels face challenges in providing mechanical strength, biocompatibility, and bioactivity necessary for successful bone regeneration. The incorporation of nanoclay into hydrogel matrices offers a potential unique solution to these challenges. This review provides a comprehensive overview of the fabrication, physico-chemical/biological performance, and applications of nanoclay-composite hydrogels in bone tissue engineering. Various fabrication techniques, including in situ polymerization, physical blending, and 3D printing, are discussed. In vitro and in vivo studies evaluating biocompatibility and bioactivity have demonstrated the potential of these hydrogels for promoting cell adhesion, proliferation, and differentiation. Their applications in bone defect repair, osteochondral tissue engineering and drug delivery are also explored. Despite their potential in bone tissue engineering, nanoclay-composite hydrogels face challenges such as optimal dispersion, scalability, biocompatibility, long-term stability, regulatory approval, and integration with emerging technologies to achieve clinical application. Future research directions need to focus on refining fabrication techniques, enhancing understanding of biological interactions, and advancing towards clinical translation and commercialization. Overall, nanoclay-composite hydrogels offer exciting opportunities for improving bone regeneration strategies.
Collapse
Affiliation(s)
- Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
8
|
Wu D, Zhao X, Xie J, Yuan R, Li Y, Yang Q, Cheng X, Wu C, Wu J, Zhu N. Physical modulation of mesenchymal stem cell exosomes: A new perspective for regenerative medicine. Cell Prolif 2024; 57:e13630. [PMID: 38462759 PMCID: PMC11294442 DOI: 10.1111/cpr.13630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exo) offer promising therapeutic potential for various refractory diseases, presenting a novel therapeutic strategy. However, their clinical application encounters several obstacles, including low natural secretion, uncontrolled biological functions and inherent heterogeneity. On the one hand, physical stimuli can mimic the microenvironment dynamics where MSC-Exo reside. These factors influence not only their secretion but also, significantly, their biological efficacy. Moreover, physical factors can also serve as techniques for engineering exosomes. Therefore, the realm of physical factors assumes a crucial role in modifying MSC-Exo, ultimately facilitating their clinical translation. This review focuses on the research progress in applying physical factors to MSC-Exo, encompassing ultrasound, electrical stimulation, light irradiation, intrinsic physical properties, ionizing radiation, magnetic field, mechanical forces and temperature. We also discuss the current status and potential of physical stimuli-affected MSC-Exo in clinical applications. Furthermore, we address the limitations of recent studies in this field. Based on this, this review provides novel insights to advance the refinement of MSC-Exo as a therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Dan Wu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiansheng Zhao
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jiaheng Xie
- Department of Plastic SurgeryXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Ruoyue Yuan
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yue Li
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Quyang Yang
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiujun Cheng
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Changyue Wu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
| | - Jinyan Wu
- Department of DermatologyChongzhou People's HospitalChengduChina
| | - Ningwen Zhu
- Department of DermatologyHuashan Hospital, Fudan UniversityShanghaiChina
- Department of PlasticReconstructive and Burns Surgery, Huashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
9
|
Wu J, Li X, Kong R, Wang J, Wang X. Analysis of biofilm expansion rate of Bacillus subtilis (MTC871) on agar substrates with different stiffness. Can J Microbiol 2023; 69:479-487. [PMID: 37379574 DOI: 10.1139/cjm-2022-0259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The surface morphology of mature biofilms is heterogeneous and can be divided into concentric rings wrinkles (I), labyrinthine networks wrinkles (II), radial ridges wrinkles (III), and branches wrinkles (IV), according to surface wrinkle structure and distribution characteristics. Due to the wrinkle structures, channels are formed between the biofilm and substrate and transport nutrients, water, metabolic products, etc. We find that expansion rate variations of biofilms growing on substrates with high and low agar concentrations (1.5, 2.0, 2.5 wt.%) are not in the same phase. In the first 3 days' growth, the interaction stress between biofilm and each agar substrate increases, which makes the biofilm expansion rate decreases before wrinkle pattern IV (branches) comes up. After 3 days, in the later growth stage after wrinkle pattern IV appears, the biofilm has larger expansion rate growing on 2.0 wt.% agar concentration, which has the larger wrinkle distance in wrinkle pattern IV reducing energy consumption. Our study shows that the stiff substrate does not always inhibit the biofilm expansion, although it does in the earlier stage; after that, mature biofilms acquire larger expansion rate by adjusting the growth mode through the wrinkle evolution even in nutrient extremely depletion.
Collapse
Affiliation(s)
- Jin Wu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianyong Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Kong
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiankun Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Pan H, Zhu S, Gong T, Wu D, Zhao Y, Yan J, Dai C, Huang Y, Yang Y, Guo Y. Matrix stiffness triggers chemoresistance through elevated autophagy in pancreatic ductal adenocarcinoma. Biomater Sci 2023; 11:7358-7372. [PMID: 37781974 DOI: 10.1039/d3bm00598d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a signature of extremely high matrix stiffness caused by a special desmoplastic reaction, which dynamically stiffens along with the pathological process. The poor prognosis and low five-year survival rate of PDAC are partly owing to chemoresistance triggered by substrate stiffness. Understanding the potential mechanisms of matrix stiffness causing PDAC chemoresistance is of great significance. In this study, methacrylated gelatin hydrogel was used as platform for PANC-1 and MIA-PaCa2 cell culture. The results indicated that compared to soft substrate, stiff substrate distinctively reduced the gemcitabine sensitivity of pancreatic cancer. Intriguingly, transmission electron microscopy, immunofluorescence staining, western blot and qRT-PCR assay showcased that the number of autophagosomes and the expression of LC3 were elevated. The observations indicate that matrix stiffness may regulate the autophagy level, which plays a vital role during chemoresistance. In brief, soft substrate exhibited low autophagy level, while the counterpart displayed elevated autophagy level. In order to elucidate the underlying interaction between matrix stiffness-mediated cell autophagy and chemoresistance, rescue experiments with rapamycin and chloroquine were conducted. We found that inhibiting cell autophagy dramatically increased the sensitivity of pancreatic cancer cells to gemcitabine in the stiff group, while promoting autophagy-driven chemoresistance in the soft group, demonstrating that matrix stiffness modulated chemoresistance via autophagy. Furthermore, RNA-seq results showed that miR-1972 may regulate autophagy level in response to matrix stiffness. Overall, our research shed light on the synergistic therapy of PDAC combined with gemcitabine and chloroquine, which is conducive to promoting a therapeutic effect.
Collapse
Affiliation(s)
- Haopeng Pan
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, 226001, Jiangsu, PR China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Tiancheng Gong
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Di Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yahong Zhao
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, 226001, Jiangsu, PR China.
| | - Jiashuai Yan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Chaolun Dai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Medical School of Nantong University, Nantong, 226001, China
| | - Yan Huang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yumin Yang
- Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, 226001, Jiangsu, PR China.
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
11
|
Chen W, Zhang H, Zhou Q, Zhou F, Zhang Q, Su J. Smart Hydrogels for Bone Reconstruction via Modulating the Microenvironment. RESEARCH (WASHINGTON, D.C.) 2023; 6:0089. [PMID: 36996343 PMCID: PMC10042443 DOI: 10.34133/research.0089] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Rapid and effective repair of injured or diseased bone defects remains a major challenge due to shortages of implants. Smart hydrogels that respond to internal and external stimuli to achieve therapeutic actions in a spatially and temporally controlled manner have recently attracted much attention for bone therapy and regeneration. These hydrogels can be modified by introducing responsive moieties or embedding nanoparticles to increase their capacity for bone repair. Under specific stimuli, smart hydrogels can achieve variable, programmable, and controllable changes on demand to modulate the microenvironment for promoting bone healing. In this review, we highlight the advantages of smart hydrogels and summarize their materials, gelation methods, and properties. Then, we overview the recent advances in developing hydrogels that respond to biochemical signals, electromagnetic energy, and physical stimuli, including single, dual, and multiple types of stimuli, to enable physiological and pathological bone repair by modulating the microenvironment. Then, we discuss the current challenges and future perspectives regarding the clinical translation of smart hydrogels.
Collapse
Affiliation(s)
- Weikai Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| | - Qirong Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
- Department of Orthopedics Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, P. R. China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi’an Jiao Tong University, Xi’an 710000, P. R. China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| |
Collapse
|
12
|
Song S, Li Y, Huang J, Cheng S, Zhang Z. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury. BIOMATERIALS ADVANCES 2023; 148:213385. [PMID: 36934714 DOI: 10.1016/j.bioadv.2023.213385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
The emergence of three-dimensional (3D) bioprinting technology has attracted ever-increasing attention in engineered tissue fabrication for stem cell-based tissue repair. However, the in vivo performance of transplanted stem cells in the tissue engineering scaffolds is still a major concern for regenerative medicine researches. Especially for neural stem cell (NSC) transplantation, the uncontrollable differentiation of the NSCs in host often leads to a poor therapeutic effect in nerve tissue repair, such as spinal cord injury (SCI) repair. To address this issue, we have fabricated a conductive composite hydrogel (CCH) scaffold loading with NSCs by 3D bioprinting, for delivering the NSCs to injured spinal cord and repairing the propriospinal nerve circuit. In our strategy, a novel conductive polymer (PEDOT:CSMA,TA) was synthesized and introduced into a photocrosslinkable gelatin/polyethylene glycol physical-gel matrix, thereby forming a composite bioink with well shear-thinning and self-healing properties. The composite bioink we prepared was then printed into the NSC-laden CCH scaffold with high shape fidelity and similar physicochemical properties to native spinal cord tissues. The NSCs encapsulated in the bioprinted CCH scaffold extended their neurites to form superior physical contact with the neighboring cells as well as the electroconductive matrix, and maintained a predominant in vivo neuronal differentiation, accompanying with few astrocytic production in the lesion area after transplantation into the SCI sites. As a result, the removal of glial scar tissues and the regeneration of well-developed nerve fibres sequentially happened, which not only facilitated nerve tissue development, but also accelerated locomotor function recovery in the SCI rats. By exploring the application of conductive biomaterials in stem cell-based SCI therapy, this work represents a feasible, new approach to precisely construct tissue engineering scaffolds for stem cell-based therapy in traumatic SCI and other nervous system diseases.
Collapse
Affiliation(s)
- Shaoshuai Song
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China.
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, China.
| |
Collapse
|
13
|
Gregory T, Benhal P, Scutte A, Quashie D, Harrison K, Cargill C, Grandison S, Savitsky MJ, Ramakrishnan S, Ali J. Rheological characterization of cell-laden alginate-gelatin hydrogels for 3D biofabrication. J Mech Behav Biomed Mater 2022; 136:105474. [PMID: 36191458 PMCID: PMC10226802 DOI: 10.1016/j.jmbbm.2022.105474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/25/2022]
Abstract
Biofabrication of tissue models that closely mimic the tumor microenvironment is necessary for high-throughput anticancer therapeutics. Extrusion-based bioprinting of heterogeneous cell-laden hydrogels has shown promise in advancing rapid artificial tissue development. A major bottleneck limiting the rapid production of physiologically relevant tissue models is the current limitation in effectively printing large populations of cells. However, by significantly increasing hydrogel cell-seeding densities, the time required to produce tissues could be effectively reduced. Here, we explore the effects of increasing cell seeding densities on the viscoelastic properties, printability, and cell viability of two different alginate-gelatin hydrogel compositions. Rheological analysis of hydrogels of varying cell seeding densities reveals an inverse relationship between cell concentration and zero-shear viscosity. We also observe that as cell seeding densities increases, the storage moduli decrease, thus lowering the required printing pressures for gel extrusion. We also observe that increasing cell concentration can negatively impact the structural properties of the extruded material by increasing post-print line spreading. We find that hydrogels composed of higher molecular weight alginates and the highest cell-seeding densities (107 cells/mL) yield higher cell viability (>80%) and structural uniformity after printing. The optimized printing parameters determined for the alginate-gelatin bioinks explored may aid in the future rapid fabrication of functional tissue models for therapeutic screening.
Collapse
Affiliation(s)
- Tyler Gregory
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
| | - Prateek Benhal
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
| | - Annie Scutte
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
| | - David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
| | - Kiram Harrison
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
| | - Casey Cargill
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
| | - Saliya Grandison
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
| | - Mary Jean Savitsky
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, 32310, USA.
| |
Collapse
|
14
|
Chu G, Zhang W, Han F, Li K, Liu C, Wei Q, Wang H, Liu Y, Han F, Li B. The role of microenvironment in stem cell-based regeneration of intervertebral disc. Front Bioeng Biotechnol 2022; 10:968862. [PMID: 36017350 PMCID: PMC9395990 DOI: 10.3389/fbioe.2022.968862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 01/07/2023] Open
Abstract
Regenerative medicine for intervertebral disc (IVD) disease, by utilizing chondrocytes, IVD cells, and stem cells, has progressed to clinical trials in the treatment of back pain, and has been studied in various animal models of disc degeneration in the past decade. Stem cells exist in their natural microenvironment, which provides vital dynamic physical and chemical signals for their survival, proliferation and function. Long-term survival, function and fate of mesenchymal stem cells (MSCs) depend on the microenvironment in which they are transplanted. However, the transplanted MSCs and the endogenous disc cells were influenced by the complicated microenvironment in the degenerating disc with the changes of biochemical and biophysical components. It is important to understand how the MSCs and endogenous disc cells survive and thrive in the harsh microenvironment of the degenerative disc. Furthermore, materials containing stem cells and their natural microenvironment have good clinical effects. However, the implantation of tissue engineering IVD (TE-IVD) cannot provide a complete and dynamic microenvironment for MSCs. IVD graft substitutes may need further improvement to provide the best engineered MSC microenvironment. Additionally, the IVD progenitor cells inside the stem cell niches have been regarded as popular graft cells for IVD regeneration. However, it is still unclear whether actual IVD progenitor cells exist in degenerative spinal conditions. Therefore, the purpose of this review is fourfold: to discuss the presence of endogenous stem cells; to review and summarize the effects of the microenvironment in biological characteristics of MSC, especially those from IVD; to explore the feasibility and prospects of IVD graft substitutes and to elaborate state of the art in the use of MSC transplantation for IVD degeneration in vivo as well as their clinical application.
Collapse
Affiliation(s)
- Genglei Chu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kexin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chengyuan Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Qiang Wei
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Huan Wang
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yijie Liu
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Fengxuan Han
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
| | - Bin Li
- Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
15
|
Song S, Li Y, Huang J, Zhang Z. Development and Characterization of Complementary Polymer Network Bioinks for 3D Bioprinting of Soft Tissue Constructs. Macromol Biosci 2022; 22:e2200181. [PMID: 35778775 DOI: 10.1002/mabi.202200181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Indexed: 11/08/2022]
Abstract
The development of three-dimensional (3D) bioprinting has been hindered by a narrow "biofabrication window" with a limited variety of feasible bioinks which are compatible with both high printability and well cytocompatibility. Herein, a generalizable strategy using complementary polymer network (CPN) bioinks has been developed in the current study, to address the conflict between the printability and cytocompatibility of bioinks in extrusion 3D bioprinting, especially for the manufacture of soft tissue constructs. In our strategy, CPN bioinks are formed though mixing two interpenetrated polymer networks, one of which is a photocrosslinkable polymer network, and the other is a dynamic polymer network crosslinked by reversible covalent linkage, thereby endowed with well reversible thixotropy. Compatible with well printability, shape fidelity, and cytocompatibility, the utilization of CPN bioinks provides a viable solution for extrusion 3D bioprinting of photocrosslinkable biomaterials at a low concentration, thus suitable for soft tissue construct fabrication. Briefly, this study is testified to be a successful attempt to extend the bioink diversity within the "biofabrication window", and offers a novel insight into designing more feasible bioinks based on their special rheological properties, for further tissue engineering and biomedicine application. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shaoshuai Song
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory of Nano-Bio Interface, Division of nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
16
|
Song S, Liu X, Huang J, Zhang Z. Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112639. [DOI: 10.1016/j.msec.2021.112639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023]
|
17
|
Liu L, Zhang T, Li C, Jiang G, Wang F, Wang L. Regulating surface roughness of electrospun poly(ε-caprolactone)/β-tricalcium phosphate fibers for enhancing bone tissue regeneration. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|