1
|
Feng M, Cui H, Li S, Li L, Zhou C, Chen L, Cao Y, Gao Y, Li D. Ubiquitin-Activating Enzyme E1 (UBA1) as a Prognostic Biomarker and Therapeutic Target in Breast Cancer: Insights into Immune Infiltration and Functional Implications. Int J Mol Sci 2024; 25:12696. [PMID: 39684409 DOI: 10.3390/ijms252312696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Ubiquitin-Activating Enzyme E1 (UBA1), an E1 enzyme involved in the activation of ubiquitin enzymes, has been involved in the onset and progression of different cancers in humans. Nevertheless, the precise contribution of UBA1 in breast cancer (BC) is still poorly characterized. In this study, a thorough investigation was carried out to elucidate the significance of UBA1 and validate its functionality in BC. Through the analysis of mRNA sequencing data of BC patients, the mRNA expression of UBA1 was observed to be notably enhanced in cancer tissues relative to controls, and high UBA1 expression was linked to worse overall survival (OS), disease-specific survival (DSS), and progress-free survival (PFS). Moreover, UBA1 exhibited potential as an independent prognostic and diagnostic biomarker for individuals with BC. Additionally, functional enrichment analysis revealed the involvement of UBA1 in inflammation-linked pathways, like the TNF-α signaling pathway, the IL-6 signaling pathway, and various immune-related biological processes. Notably, single-sample gene set enrichment analysis (ssGSEA) aided in the identification of a negative link between UBA1 expression and the levels of infiltrating mast cells, Th1 cells, iDC cells, B cells, DC cells, Tem cells, Cytotoxic cells, T cells, CD8T cells, and pDC cells. Finally, this study demonstrated that silencing UBA1 significantly impeded the growth and development of BC cell lines. These findings highlight UBA1 as a potential prognostic biomarker linked to immune infiltration in BC, thereby depicting its potential as a new therapeutic target for individuals with BC.
Collapse
Affiliation(s)
- Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huanhuan Cui
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sen Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Di Chio C, Previti S, Starvaggi J, De Luca F, Calabrò ML, Zappalà M, Ettari R. Drug Combination Studies of Isoquinolinone AM12 with Curcumin or Quercetin: A New Combination Strategy to Synergistically Inhibit 20S Proteasome. Int J Mol Sci 2024; 25:10708. [PMID: 39409037 PMCID: PMC11477218 DOI: 10.3390/ijms251910708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
In the eukaryotic cells, the ubiquitin-proteasome system (UPS) plays a crucial role in the intracellular protein turnover. It is involved in several cellular functions such as the control of the regular cell cycle progression, the immune surveillance, and the homeostasis. Within the 20S proteasome barrel-like structure, the catalytic subunits, β1, β2 and β5, are responsible for different proteolytic activities: caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (ChT-L), respectively. The β5 subunit is particularly targeted for its role in antitumor activity: the synthesis of β5 subunit inhibitors could be a promising strategy for the treatment of solid and hematologic tumors. In the present work, we performed two combination studies of AM12, a recently developed synthetic proteasome inhibitor, with curcumin and quercetin, two nutraceuticals endowed of many pharmacological properties. We measured the combination index (CI), applying the Chou and Talalay method, comparing the two studies, from 50% to 90% of proteasome inhibition. In the case of the combination AM12 + curcumin, an increasing synergism was observed from 50% to 90% of proteasome inhibition, while in the case of the combination AM12 + quercetin an additive effect was observed only from 50% to 70% of β5 subunit inhibition. These results suggest that combining AM12 with curcumin is a more promising strategy than combining it with quercetin for potential therapeutic applications, especially in treating tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (C.D.C.); (S.P.); (J.S.); (F.D.L.); (M.L.C.); (R.E.)
| | | |
Collapse
|
3
|
Gu W, Wu G, Chen G, Meng X, Xie Z, Cai S. Polyphenols alleviate metabolic disorders: the role of ubiquitin-proteasome system. Front Nutr 2024; 11:1445080. [PMID: 39188976 PMCID: PMC11345163 DOI: 10.3389/fnut.2024.1445080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic disorders include obesity, nonalcoholic fatty liver disease, insulin resistance and type 2 diabetes. It has become a major health issue around the world. Ubiquitin-proteasome system (UPS) is essential for nearly all cellular processes, functions as a primary pathway for intracellular protein degradation. Recent researches indicated that dysfunctions in the UPS may result in the accumulation of toxic proteins, lipotoxicity, oxidative stress, inflammation, and insulin resistance, all of which contribute to the development and progression of metabolic disorders. An increasing body of evidence indicates that specific dietary polyphenols ameliorate metabolic disorders by preventing lipid synthesis and transport, excessive inflammation, hyperglycemia and insulin resistance, and oxidative stress, through regulation of the UPS. This review summarized the latest research progress of natural polyphenols improving metabolic disorders by regulating lipid accumulation, inflammation, oxidative stress, and insulin resistance through the UPS. In addition, the possible mechanisms of UPS-mediated prevention of metabolic disorders are comprehensively proposed. We aim to provide new angle to the development and utilization of polyphenols in improving metabolic disorders.
Collapse
Affiliation(s)
- Wei Gu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Xianghui Meng
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, China
| | - Shanbao Cai
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
4
|
Zhang Y, Chen F, Balic M, Creighton CJ. An essential gene signature of breast cancer metastasis reveals targetable pathways. Breast Cancer Res 2024; 26:98. [PMID: 38867323 PMCID: PMC11167932 DOI: 10.1186/s13058-024-01855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The differential gene expression profile of metastatic versus primary breast tumors represents an avenue for discovering new or underappreciated pathways underscoring processes of metastasis. However, as tumor biopsy samples are a mixture of cancer and non-cancer cells, most differentially expressed genes in metastases would represent confounders involving sample biopsy site rather than cancer cell biology. METHODS By paired analysis, we defined a top set of differentially expressed genes in breast cancer metastasis versus primary tumors using an RNA-sequencing dataset of 152 patients from The Breast International Group Aiming to Understand the Molecular Aberrations dataset (BIG-AURORA). To filter the genes higher in metastasis for genes essential for breast cancer proliferation, we incorporated CRISPR-based data from breast cancer cell lines. RESULTS A significant fraction of genes with higher expression in metastasis versus paired primary were essential by CRISPR. These 264 genes represented an essential signature of breast cancer metastasis. In contrast, nonessential metastasis genes largely involved tumor biopsy site. The essential signature predicted breast cancer patient outcome based on primary tumor expression patterns. Pathways underlying the essential signature included proteasome degradation, the electron transport chain, oxidative phosphorylation, and cancer metabolic reprogramming. Transcription factors MYC, MAX, HDAC3, and HCFC1 each bound significant fractions of essential genes. CONCLUSIONS Associations involving the essential gene signature of breast cancer metastasis indicate true biological changes intrinsic to cancer cells, with important implications for applying existing therapies or developing alternate therapeutic approaches.
Collapse
Affiliation(s)
- Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, MS305, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, MS305, Houston, TX, 77030, USA
| | - Marija Balic
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Unit for Translational Breast Cancer Research, Medical University of Graz, Graz, Austria
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, MS305, Houston, TX, 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Su Y, Meng L, Ge C, Liu Y, Zhang C, Yang Y, Tian W, Tian H. PSMD9 promotes the malignant progression of hepatocellular carcinoma by interacting with c-Cbl to activate EGFR signaling and recycling. J Exp Clin Cancer Res 2024; 43:142. [PMID: 38745188 PMCID: PMC11092260 DOI: 10.1186/s13046-024-03062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Mounting evidences shows that the ubiquitin‒proteasome pathway plays a pivotal role in tumor progression. The expression of 26S proteasome non-ATPase regulatory subunit 9 (PSMD9) is correlated with recurrence and radiotherapy resistance in several tumor types. However, the role and mechanism of PSMD9 in hepatocellular carcinoma (HCC) progression remain largely unclear. METHODS PSMD9 was identified as a prognosis-related biomarker for HCC based on analysis of clinical characteristics and RNA-seq data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and the JP Project of the International Cancer Genome Consortium (ICGC-LIRI-JP). PSMD9 expression was analyzed in cancer tissues and adjacent noncancerous tissues via immunohistochemistry and Western blotting. Multiple in vivo and in vitro experimental techniques (such as CCK-8, colony formation, EdU, and Transwell assays; flow cytometry; Western blotting; quantitative RT-PCR; Coimmunoprecipitation assay and immunofluorescence confocal imaging) were used to assess the functions of PSMD9 in the pathogenesis of HCC. RESULTS We found that the expression of PSMD9 was upregulated and associated with a poor prognosis in HCC patients. PSMD9 promoted HCC cell proliferation, migration, invasion and metastasis. Knockdown of PSMD9 significantly inhibited HCC cell proliferation by inducing G1/S cell cycle arrest and apoptosis. Mechanistically, we demonstrated that PSMD9 promoted HCC cell proliferation and metastasis via direct interaction with the E3 ubiquitin ligase c-Cbl, suppresses EGFR ubiquitination, influenced EGFR endosomal trafficking and degradation and subsequently activated ERK1/2 and Akt signaling. In addition, we showed that PSMD9 knockdown sensitized HCC cells to the tyrosine kinase inhibitor erlotinib in vitro and in vivo. CONCLUSIONS Collectively, our results indicate that PSMD9 drives HCC progression and erlotinib resistance by suppressing c-Cbl mediated EGFR ubiquitination and therefore can be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yuting Su
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, China
| | - Lili Meng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chao Ge
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, China
| | - Yuqi Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, China
| | - Chi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, China
| | - Yue Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, China
| | - Wei Tian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, China.
| | - Hua Tian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 25/Ln 2200, Xietu Road, Shanghai, 200032, China.
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
- The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, 533000, China.
| |
Collapse
|
6
|
Gu J, Zhang J, Xia R, Wang X, Yang J, Xie F, Zhou Q, Li J, Zhang T, Chen Q, Fan Y, Guo S, Wang H. The role of histone H1.2 in pancreatic cancer metastasis and chemoresistance. Drug Resist Updat 2024; 73:101027. [PMID: 38290407 DOI: 10.1016/j.drup.2023.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024]
Abstract
AIMS Pancreatic cancer (PC) is a highly metastatic malignant tumor of the digestive system. Drug resistance frequently occurs during cancer treatment process. This study aimed to explore the link between chemoresistance and tumor metastasis in PC and its possible molecular and cellular mechanisms. METHODS A Metastasis and Chemoresistance Signature (MCS) scoring system was built and validated based on metastasis- and chemoresistance-related genes using gene expression data of PC, and the model was applied to single-cell RNA sequencing data. The influence of linker histone H1.2 (H1-2) on PC was explored through in vitro and in vivo experiments including proliferation, invasion, migration, drug sensitivity, rescue experiments and immunohistochemistry, emphasizing its regulation with c-MYC signaling pathway. RESULTS A novel MCS scoring system accurately predicted PC patient survival and was linked to chemoresistance and epithelial-mesenchymal transition (EMT) in PC single-cell RNA sequencing data. H1-2 emerged as a significant prognostic factor, with its high expression indicating increased chemoresistance and EMT. This upregulation was mediated by c-MYC, which was also found to be highly expressed in PC tissues. CONCLUSION The MCS scoring system offers insights into PC chemoresistance and metastasis potential. Targeting H1-2 could enhance therapeutic strategies and improve PC patient outcomes.
Collapse
Affiliation(s)
- Jianyou Gu
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, China
| | - Renpei Xia
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Fuming Xie
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Qiang Zhou
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Jinghe Li
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Tao Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China
| | - Qing Chen
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Yingfang Fan
- Department of Biliary Surgery, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| | - Shixiang Guo
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China.
| |
Collapse
|
7
|
Pakjoo M, Ahmadi SE, Zahedi M, Jaafari N, Khademi R, Amini A, Safa M. Interplay between proteasome inhibitors and NF-κB pathway in leukemia and lymphoma: a comprehensive review on challenges ahead of proteasome inhibitors. Cell Commun Signal 2024; 22:105. [PMID: 38331801 PMCID: PMC10851565 DOI: 10.1186/s12964-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
The current scientific literature has extensively explored the potential role of proteasome inhibitors (PIs) in the NF-κB pathway of leukemia and lymphoma. The ubiquitin-proteasome system (UPS) is a critical component in regulating protein degradation in eukaryotic cells. PIs, such as BTZ, are used to target the 26S proteasome in hematologic malignancies, resulting in the prevention of the degradation of tumor suppressor proteins, the activation of intrinsic mitochondrial-dependent cell death, and the inhibition of the NF-κB signaling pathway. NF-κB is a transcription factor that plays a critical role in the regulation of apoptosis, cell proliferation, differentiation, inflammation, angiogenesis, and tumor migration. Despite the successful use of PIs in various hematologic malignancies, there are limitations such as resistant to these inhibitors. Some reports suggest that PIs can induce NF-κB activation, which increases the survival of malignant cells. This article discusses the various aspects of PIs' effects on the NF-κB pathway and their limitations. Video Abstract.
Collapse
Affiliation(s)
- Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- ATMP department, Breast cancer research center, Motamed cancer institute, ACECR, P.O. BOX:15179/64311, Tehran, Iran
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhane Khademi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Yang W, Wang S, Tong S, Zhang WD, Qin JJ. Expanding the ubiquitin code in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166884. [PMID: 37704111 DOI: 10.1016/j.bbadis.2023.166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental regulatory mechanism in cells, vital for maintaining cellular homeostasis, compiling signaling transduction, and determining cell fates. These biological processes require the coordinated signal cascades of UPS members, including ubiquitin ligases, ubiquitin-conjugating enzymes, deubiquitinases, and proteasomes, to ubiquitination and de-ubiquitination on substrates. Recent studies indicate that ubiquitination code rewriting is particularly prominent in pancreatic cancer. High frequency mutation or aberrant hyperexpression of UPS members dysregulates ferroptosis, tumor microenvironment, and metabolic rewiring processes and contribute to tumor growth, metastasis, immune evasion, and acquired drug resistance. We conduct an in-depth overview of ubiquitination process in pancreatic cancer, highlighting the role of ubiquitin code in tumor-promoting and tumor-suppressor pathways. Furthermore, we review current UPS modulators and analyze the potential of UPS modulators as cancer therapy.
Collapse
Affiliation(s)
- Wenyan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqun Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
9
|
Kulkarni S, Bhandary D, Singh Y, Monga V, Thareja S. Boron in cancer therapeutics: An overview. Pharmacol Ther 2023; 251:108548. [PMID: 37858628 DOI: 10.1016/j.pharmthera.2023.108548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Boron has become a crucial weapon in anticancer research due to its significant intervention in cell proliferation. Being an excellent bio-isosteric replacement of carbon, it has modulated the anticancer efficacy of various molecules in the development pipeline. It has elicited promising results through interactions with various therapeutic targets such as HIF-1α, steroid sulfatase, arginase, proteasome, etc. Since boron liberates alpha particles, it has a wide-scale application in Boron Neutron Capture therapy (BNCT), a radiotherapy that demonstrates selectivity towards cancer cells due to high boron uptake capacity. Significant advances in the medicinal chemistry of boronated compounds, such as boronated sugars, natural/unnatural amino acids, boronated DNA binders, etc., have been reported over the past few years as BNCT agents. In addition, boronated nanoparticles have assisted the field of bio-nano medicines by their usage in radiotherapy. This review exclusively focuses on the medicinal chemistry aspects, radiotherapeutic, and chemotherapeutic aspects of boron in cancer therapeutics. Emphasis is also given on the mechanism of action along with advantages over conventional therapies.
Collapse
Affiliation(s)
- Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Dyuti Bhandary
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
10
|
Atta H, Alzahaby N, Hamdy NM, Emam SH, Sonousi A, Ziko L. New trends in synthetic drugs and natural products targeting 20S proteasomes in cancers. Bioorg Chem 2023; 133:106427. [PMID: 36841046 DOI: 10.1016/j.bioorg.2023.106427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/15/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Cancer is a global health challenge that remains to be a field of extensive research aiming to find new anticancer therapeutics. The 20S proteasome complex is one of the targets of anticancerdrugs, as it is correlated with several cancer types. Herein, we aim to discuss the 20S proteasome subunits and investigatethe currently studied proteasome inhibitors targeting the catalytically active proteasome subunits. In this review, we summarize the proteindegradation mechanism of the 20S proteasome complex and compareit with the 26S proteasome complex. Afterwards, the localization of the 20S proteasome is summarized as well as its use as a diagnosticandprognostic marker. The FDA-approved proteasome inhibitors (PIs) under clinical trials are summarized and their current limited use in solid tumors is also reviewed in addition to the expression of theβ5 subunit in differentcell lines. The review discusses in-silico analysis of the active subunit of the 20S proteasome complex. For development of new proteasome inhibitor drugs, the natural products inhibiting the 20S proteasome are summarized, as well as novel methodologies and challenges for the natural product discovery and current information about the biosynthetic gene clusters encoding them. We herein briefly summarize some resistancemechanismsto the proteasomeinhibitors. Additionally, we focus on the three main classes of proteasome inhibitors: 1] boronic acid, 2] beta-lactone and 3] epoxide inhibitor classes, as well as other PI classes, and their IC50 values and their structure-activity relationship (SAR). Lastly,we summarize several future prospects of developing new proteasome inhibitors towards the treatment of tumors, especially solid tumors.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt
| | - Nouran Alzahaby
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Sonousi
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Biology Department, School of Sciences and Engineering, American University in Cairo, Egypt.
| |
Collapse
|
11
|
Ubiquitin Proteasome System and Microtubules Are Master Regulators of Central and Peripheral Nervous System Axon Degeneration. Cells 2022; 11:cells11081358. [PMID: 35456037 PMCID: PMC9033047 DOI: 10.3390/cells11081358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Axonal degeneration is an active process that differs from neuronal death, and it is the hallmark of many disorders affecting the central and peripheral nervous system. Starting from the analyses of Wallerian degeneration, the simplest experimental model, here we describe how the long projecting neuronal populations affected in Parkinson’s disease and chemotherapy-induced peripheral neuropathies share commonalities in the mechanisms and molecular players driving the earliest phase of axon degeneration. Indeed, both dopaminergic and sensory neurons are particularly susceptible to alterations of microtubules and axonal transport as well as to dysfunctions of the ubiquitin proteasome system and protein quality control. Finally, we report an updated review on current knowledge of key molecules able to modulate these targets, blocking the on-going axonal degeneration and inducing neuronal regeneration. These molecules might represent good candidates for disease-modifying treatment, which might expand the window of intervention improving patients’ quality of life.
Collapse
|
12
|
Bortezomib potentiates the antitumor effect of tributyltin(IV) ferulate in colon cancer cells exacerbating ER stress and promoting apoptosis. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|