1
|
Zhang S, Sun X, Mou M, Amahong K, Sun H, Zhang W, Shi S, Li Z, Gao J, Zhu F. REGLIV: Molecular regulation data of diverse living systems facilitating current multiomics research. Comput Biol Med 2022; 148:105825. [PMID: 35872412 DOI: 10.1016/j.compbiomed.2022.105825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 12/24/2022]
Abstract
Multiomics is a powerful technique in molecular biology that facilitates the identification of new associations among different molecules (genes, proteins & metabolites). It has attracted tremendous research interest from the scientists worldwide and has led to an explosive number of published studies. Most of these studies are based on the regulation data provided in available databases. Therefore, it is essential to have molecular regulation data that are strictly validated in the living systems of various cell lines and in vivo models. However, no database has been developed yet to provide comprehensive molecular regulation information validated by living systems. Herein, a new database, Molecular Regulation Data of Living System Facilitating Multiomics Study (REGLIV) is introduced to describe various types of molecular regulation tested by the living systems. (1) A total of 2996 regulations describe the changes in 1109 metabolites triggered by alterations in 284 genes or proteins, and (2) 1179 regulations describe the variations in 926 proteins induced by 125 endogenous metabolites. Overall, REGLIV is unique in (a) providing the molecular regulation of a clearly defined regulatory direction other than simple correlation, (b) focusing on molecular regulations that are validated in a living system not simply in an in vitro test, and (c) describing the disease/tissue/species specific property underlying each regulation. Therefore, REGLIV has important implications for the future practice of not only multiomics, but also other fields relevant to molecular regulation. REGLIV is freely accessible at: https://idrblab.org/regliv/.
Collapse
Affiliation(s)
- Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kuerbannisha Amahong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
2
|
Tang H, Yang Q, Tang Q, Li X, Ding W, Chen W. Integrated transcriptomics unravels implications of glycosylation-regulating signature in diagnosis, prognosis and therapeutic benefits of hepatocellular carcinoma. Comput Biol Med 2022; 148:105886. [DOI: 10.1016/j.compbiomed.2022.105886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 07/16/2022] [Indexed: 11/27/2022]
|
3
|
Ye T, Lin L, Cao L, Huang W, Wei S, Shan Y, Zhang Z. Novel Prognostic Signatures of Hepatocellular Carcinoma Based on Metabolic Pathway Phenotypes. Front Oncol 2022; 12:863266. [PMID: 35677150 PMCID: PMC9168273 DOI: 10.3389/fonc.2022.863266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Hepatocellular carcinoma is a disastrous cancer with an aberrant metabolism. In this study, we aimed to assess the role of metabolism in the prognosis of hepatocellular carcinoma. Ten metabolism-related pathways were identified to classify the hepatocellular carcinoma into two clusters: Metabolism_H and Metabolism_L. Compared with Metabolism_L, patients in Metabolism_H had lower survival rates with more mutated TP53 genes and more immune infiltration. Moreover, risk scores for predicting overall survival based on eleven differentially expressed metabolic genes were developed by the least absolute shrinkage and selection operator (LASSO)-Cox regression model in The Cancer Genome Atlas (TCGA) dataset, which was validated in the International Cancer Genome Consortium (ICGC) dataset. The immunohistochemistry staining of liver cancer patient specimens also identified that the 11 genes were associated with the prognosis of liver cancer patients. Multivariate Cox regression analyses indicated that the differentially expressed metabolic gene-based risk score was also an independent prognostic factor for overall survival. Furthermore, the risk score (AUC = 0.767) outperformed other clinical variables in predicting overall survival. Therefore, the metabolism-related survival-predictor model may predict overall survival excellently for HCC patients.
Collapse
Affiliation(s)
- Tingbo Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leilei Lin
- Department of Ultrasound, Wenzhou People's Hospital, Wenzhou, China
| | - Lulu Cao
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Weiguo Huang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengzhe Wei
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongjing Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|