Ao C, Jiao S, Wang Y, Yu L, Zou Q. Biological Sequence Classification: A Review on Data and General Methods.
RESEARCH (WASHINGTON, D.C.) 2022;
2022:0011. [PMID:
39285948 PMCID:
PMC11404319 DOI:
10.34133/research.0011]
[Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/25/2022] [Indexed: 09/19/2024]
Abstract
With the rapid development of biotechnology, the number of biological sequences has grown exponentially. The continuous expansion of biological sequence data promotes the application of machine learning in biological sequences to construct predictive models for mining biological sequence information. There are many branches of biological sequence classification research. In this review, we mainly focus on the function and modification classification of biological sequences based on machine learning. Sequence-based prediction and analysis are the basic tasks to understand the biological functions of DNA, RNA, proteins, and peptides. However, there are hundreds of classification models developed for biological sequences, and the quite varied specific methods seem dizzying at first glance. Here, we aim to establish a long-term support website (http://lab.malab.cn/~acy/BioseqData/home.html), which provides readers with detailed information on the classification method and download links to relevant datasets. We briefly introduce the steps to build an effective model framework for biological sequence data. In addition, a brief introduction to single-cell sequencing data analysis methods and applications in biology is also included. Finally, we discuss the current challenges and future perspectives of biological sequence classification research.
Collapse