2
|
Liu Y, Wu K, Li L, Zhu F, Wang L, Su H, Li Y, Lu L, Lu G, Hu X. Total coumarins of Pileostegia tomentella induces cell death in SCLC by reprogramming metabolic patterns, possibly through attenuating β-catenin/AMPK/SIRT1. Chin Med 2023; 18:1. [PMID: 36597133 PMCID: PMC9809065 DOI: 10.1186/s13020-022-00703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Small-cell lung cancer (SCLC) is a high malignant and high energy-consuming type of lung cancer. Total coumarins of Pileostegia tomentella (TCPT) from a traditional folk medicine of Yao minority, is a potential anti-cancer mixture against SCLC, but the pharmacological and molecular mechanism of TCPT remains largely unknown. METHODS Screening of viability inhibition of TCPT among 7 cell lines were conducted by using CCK-8 assays. Anti-proliferative activities of TCPT in SCLC were observed by using colony formation and flow cytometry assays. Morphological changes were observed by transmission electron microscope and Mito-Tracker staining. High Throughput RNA-seq analysis and bio-informatics analysis were applied to find potential targeted biological and signaling pathways affected by TCPT. The mRNA expression of DEGs and protein expression of signalling proteins and metabolic enzymes were verified by qPCR and Western blot assays. Activity of rate-limiting enzymes and metabolite level were detected by corresponding enzyme activity and metabolites kits. Xenograft nude mice model of SCLC was established to observe the in vivo inhibition, metabolism reprogramming and mechanism of TCPT. RESULTS TCPT treatment shows the best inhibition in SCLC cell line H1688 rather than other 5 lung cancer cell lines. Ultrastructural investigation indicates TCPT induces mitochondria damage such as cytoplasm shrinkage, ridges concentration and early sight of autolysosome, as well as decrease of membrane potential. Results of RNA-seq combined bio-informatics analysis find out changes of metabolism progression affected the most by TCPT in SCLC cells, and these changes might be regulated by β-catenin/AMPK/SIRT1 axis. TCPT might mainly decline the activity and expression of rate-limiting enzymes, OGDH, PDHE1, and LDHA/B to reprogram aerobic oxidation pattern, resulting in reduction of ATP production in SCLC cells. Xenograft nude mice model demonstrates TCPT could induce cell death and inhibit growth in vivo. Assimilate to the results of in vitro model, TCPT reprograms metabolism by decreasing the activity and expression of rate-limiting enzymes (OGDH, PDHE1, and LDHA/B), and attenuates the expression of β-catenin, p-β-catenin, AMPK and SIRT1 accordance with in vitro data. CONCLUSION Our results demonstrated TCPT induces cell death of SCLC by reprograming metabolic patterns, possibly through attenuating master metabolic pathway axis β-catenin/AMPK/SIRT1.
Collapse
Affiliation(s)
- Ying Liu
- grid.411858.10000 0004 1759 3543Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China ,grid.411858.10000 0004 1759 3543Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China
| | - Kun Wu
- Departments of Hepatobiliary and Gastrointestinal Surgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021 Guangxi People’s Republic of China
| | - Li Li
- grid.411858.10000 0004 1759 3543Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China ,grid.411858.10000 0004 1759 3543Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China
| | - Fucui Zhu
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Li Wang
- grid.411858.10000 0004 1759 3543Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China ,grid.411858.10000 0004 1759 3543Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China
| | - Hua Su
- grid.411858.10000 0004 1759 3543Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China ,grid.411858.10000 0004 1759 3543Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China
| | - Ying Li
- Department of Pharmacy, Guangxi Orthopaedics and Traumatology Hospital, Nanning, 530012 Guangxi People’s Republic of China
| | - Lu Lu
- School of Medicine & Health, Guangxi Vocational & Technical Institute of Industry, Nanning, 530001 Guangxi People’s Republic of China
| | - Guoshou Lu
- grid.411858.10000 0004 1759 3543Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China ,grid.411858.10000 0004 1759 3543Department of Chemistry, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China
| | - Xiaoxi Hu
- grid.411858.10000 0004 1759 3543Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China ,grid.411858.10000 0004 1759 3543Department of Chemistry, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China
| |
Collapse
|
3
|
The Prangos genus: a comprehensive review on traditional use, phytochemistry, and pharmacological activities. PHYTOCHEMISTRY REVIEWS 2020. [DOI: 10.1007/s11101-020-09688-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractThe members of the Prangos genus (Apiaceae) have been widely applied in the Iranian traditional medicine internally and externally for different purposes. The aim of this review is to summarize the ethnomedicinal and food applications of Prangos species and to gather the phytochemical and pharmacological data on this genus. Among the 129 constituents isolated from Prangos species, coumarin derivatives are the main compounds. Several papers report the compositions of essential oils obtained from different plant parts, mostly containing monoterpene and sesquiterpene hydrocarbons. Various pharmacological activities of essential oils, crude extracts or isolated compounds of the Prangos species have been observed, primarily in in vitro experiments. Antioxidant, antimicrobial, cytotoxic and anti-proliferative activities have been the most extensively studied. The efficacy and safety of Prangos plants have not been assessed in animal experiments or clinical trials. Although their furocoumarin content might be a source of adverse effects, toxic effects of Prangos species have not been reported. It can be concluded, that further preclinical and clinical data are necessary to assess the rationale and safety of the medicinal and food use of Prangos species.
Collapse
|
4
|
Chen J, Wang L, Fan Y, Yang Y, Xu M, Shi X. Synthesis and anticancer activity of cyclotriphosphazenes functionalized with 4-methyl-7-hydroxycoumarin. NEW J CHEM 2019. [DOI: 10.1039/c9nj04787e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthesis of three cyclotriphosphazenes derivatives bearing 4-methyl-7-hydroxycoumarin moieties with the numbers of 2, 4, or 6 were reported, and their antitumor activities were test.
Collapse
Affiliation(s)
- Jipeng Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
- Shanghai
- China
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
- Shanghai
- China
| | - Yu Fan
- College of Chemistry and Chemical Engineering and Biotechnology, Donghua University
- Shanghai
- China
| | - Yunxia Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
- Shanghai
- China
| | - Mengsheng Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
- Shanghai
- China
| | - Xiangyang Shi
- College of Chemistry and Chemical Engineering and Biotechnology, Donghua University
- Shanghai
- China
| |
Collapse
|