1
|
Chudasama DD, Rajput CV, Patel MS, Parekh JN, Patel HC, Chikhaliya NP, Puerta A, Padrón JM, Ram KR. Microwave-induced one-pot synthesis of 3-imidazolyl indole clubbed 1,2,3-triazole hybrids as antiproliferative agents and density functional theory study. Arch Pharm (Weinheim) 2024; 357:e2300632. [PMID: 38150663 DOI: 10.1002/ardp.202300632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Herein, we outline a highly efficient PEG-4000-mediated one-pot three-component reaction for the synthesis of 3-imidazolyl indole clubbed 1,2,3-triazole derivatives (5a-r) at up to 96% yield as antiproliferative agents. This three-component protocol offers the advantages of an environmentally benign reaction, excellent yield, quick response time, and operational simplicity triggered by the copper catalyst under microwave irradiation. All the synthesized compounds were tested for antiproliferative activity against six human solid tumor cell lines, that is, A549 and SW1573 (nonsmall cell lung), HBL100 and T-47D (breast), HeLa (cervix), and WiDr (colon). Among them, six compounds, 5g-j, 5m, and 5p, demonstrated effective antiproliferative action with GI50 values under 10 μM. Furthermore, density functional theory (DFT) calculations were performed for all the synthesized molecules through geometry optimizations, frontier molecular orbital approach, and molecular electrostatic potential (MESP). The theoretical DFT calculation was performed using the DFT/B3LYP/6-31+G (d,p) basis set. Moreover, the biological reactivity of all the representative synthesized molecules was compared with the theoretically calculated quantum chemical descriptors and MESP 3D plots. We also investigated the drug-likeness characteristic and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction. In general, our approach enables environmentally friendly access to 3-imidazolyl indole clubbed 1,2,3-triazole derivatives as prospective antiproliferative agents.
Collapse
Affiliation(s)
| | - Chetan V Rajput
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Navin P Chikhaliya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
2
|
Lu DY, Lu TR, Yarla NS, Xu B. Drug Sensitivity Testing for Cancer Therapy, Key Areas. Rev Recent Clin Trials 2022; 17:291-299. [PMID: 35986532 DOI: 10.2174/1574887117666220819094528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/15/2023]
Abstract
AIMS Cancer is a high-mortality disease (9.6 million deaths in 2018 worldwide). Given various anticancer drugs, drug selection plays a key role in patient survival in clinical trials. METHODS Drug Sensitivity Testing (DST), one of the leading drug selective systems, was widely practiced for therapeutic promotion in the clinic. Notably, DSTs assist in drug selection that benefits drug responses against cancer from 20-22% to 30-35% over the past two decades. The relationship between drug resistance in vitro and drug treatment benefits was associated with different tumor origins and subtypes. Medical theory and underlying DST mechanisms remain poorly understood until now. The study of the clinical scenario, sustainability and financial support for mechanism and technical promotions is indispensable. RESULTS Despite the great technical advance, therapeutic prediction and drug selection by DST needs to be miniature, versatility and cost-effective in the clinic. Multi-parameters and automation of DST should be a future trend. Advanced biomedical knowledge and clinical approaches to translating oncologic profiles into drug selection were the main focuses of DST developments. With a great technical stride, the clinical architecture of the DST platform was entering higher levels (drug response testing at any stage of cancer patients and miniaturization of tumor samples). DISCUSSION The cancer biology and pharmacology for drug selection mutually benefit the clinic. New proposals to reveal more therapeutic information and drug response prediction at genetic, molecular and omics levels should be estimated overall. CONCLUSION By upholding this goal of non-invasive, versatility and automation, DST could save the life of several thousand annually worldwide. In this article, new insights into DST novelty and development are highlighted.
Collapse
Affiliation(s)
- Da-Yong Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, PRC, China
| | - Ting-Ren Lu
- College of Science, Shanghai University, Shanghai 200444, PRC, China
| | | | - Bin Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| |
Collapse
|
3
|
Shankaraiah N, Tokala R, Bora D. Contribution of Knoevenagel Condensation Products towards Development of Anticancer Agents: An Updated Review. ChemMedChem 2022; 17:e202100736. [PMID: 35226798 DOI: 10.1002/cmdc.202100736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Knoevenagel condensation is an entrenched, prevailing, prominent arsenal following greener principles in the generation of α, β-unsaturated ketones/carboxylic acids by involving carbonyl functionalities and active methylenes. This reaction has proved to be a major driving force in many multicomponent reactions indicating the prolific utility towards the development of biologically fascinating molecules. This eminent reaction was acclimatised on different pharmacophoric aldehydes (benzimidazole, β-carboline, phenanthrene, indole, imidazothiadiazole, pyrazole etc.) and active methylenes (oxindole, barbituric acid, Meldrum's acid, thiazolidinedione etc.) to generate the library of chemical compounds. Their potential was also explicit to understand the significance of functionalities involved, which thereby evoke further developments in drug discovery. Furthermore, most of these reaction products exhibited remarkable anticancer activity in nanomolar to micromolar ranges by targeting different cancer targets like DNA, microtubules, Topo-I/II, and kinases (PIM, PARP, NMP, p300/CBP) etc. This review underscores the efficiency of the Knoevenagel condensation explored in the past six-year to generate molecules of pharmacological interest, predominantly towards cancer. The present review also provides the aspects of structure-activity relationships, mode of action and docking study with possible interaction with the target protein.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- National Institute of Pharmaceutical Education and Research NIPER, Department of Medicinal Chemistry, Balanagar, 500037, Hyderabad, INDIA
| | - Ramya Tokala
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| | - Darshana Bora
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| |
Collapse
|
4
|
Fasih Ramandi N, Faranoush M, Ghassempour A, Aboul-Enein HY. Mass Spectrometry: A Powerful Method for Monitoring Various Type of Leukemia, Especially MALDI-TOF in Leukemia's Proteomics Studies Review. Crit Rev Anal Chem 2021; 52:1259-1286. [PMID: 33499652 DOI: 10.1080/10408347.2021.1871844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent success in studying the proteome, as a source of biomarkers, has completely changed our understanding of leukemia (blood cancer). The identification of differentially expressed proteins, such as relapse and drug resistance proteins involved in leukemia by using various ionization sources and mass analyzers of mass spectrometry techniques, has helped scientists find better diagnosis, prognosis, and treatment strategies. With the aid of this powerful analytical technique, we can investigate the qualification/quantification of proteins, protein-protein interactions, post-translational modifications, and find the correlation between proteins and their genes with the hope of finding the missing parts of the successful therapy puzzle. In this review, we followed different MS sources and analyzers which used for monitoring various type of leukemia, then focused on MALDI-TOF MS as a quick and reliable method for studying proteins. Due to several review published for other techniques, the present review is the first work in this field. Also, by classifying more than 400 proteins, we have found 42 proteins are involved in two or three different stages of leukemia. Finally, we have suggested six specific biomarkers for AML, one for ALL, three biomarkers with a role in the etiology of leukemia and 13 markers with the potential for further studies.
Collapse
Affiliation(s)
- Negin Fasih Ramandi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Institute of Endocrinology, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hassan Y Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Cairo, Egypt
| |
Collapse
|
5
|
Zhang Z, Zeng P, Gao W, Wu R, Deng T, Chen S, Tian X. Exploration of the Potential Mechanism of Calculus Bovis in Treatment of Primary Liver Cancer by Network Pharmacology. Comb Chem High Throughput Screen 2021; 24:129-138. [PMID: 32772910 DOI: 10.2174/1386207323666200808172051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/21/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
AIM AND OBJECTIVE Calculus Bovis (CB) has been employed to treat diseases for a long time. It has been identified to play significant anti-inflammatory and anti-tumor roles. However, the mechanism of treating primary liver cancer (PLC) remains to be revealed. This study aims to clarify the molecules and mechanisms of CB in treating PLC. MATERIALS AND METHODS After oral bioavailability (OB) and drug-likeness (DL) screening, 15 small molecules were identified as the potential ingredients against PLC. Following this, related targets network constructions and pathways were applied to clarify the mechanism of CB in treating PLC. An in vitro experiment was carried out to identify the function of CB in treating PLC. RESULTS Eleven compounds of CB were identified that play an anti-PLC role, including oleanolic acid, ergosterol, ursolic acid, etc. The potential targets which were observed include IL6, MAPK-8, VEGFA, Caspase-3, etc. Further analysis showed that the mechanism of CB in the treatment of PLC involved apoptosis-related pathways and immune-related pathways. CONCLUSION In summary, the current study combines network pharmacology and in vitro experiments to reveal the mechanism of CB against PLC. We concluded that 11 ingredients of CB have an anti-PLC effect. Furthermore, CB plays a key role in treating PLC mainly by apoptosisrelated pathways and immune-related pathways. Our experiment verifies that CB promotes the apoptosis of SMMC-7721.
Collapse
Affiliation(s)
- Zhen Zhang
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Puhua Zeng
- Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, China
| | - Wenhui Gao
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruoxia Wu
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tianhao Deng
- Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, China
| | - Siqin Chen
- Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, China
| | - Xuefei Tian
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
6
|
Zhou Y, Wang C, Jiang Y, Ren P, Shao J, Tuersun P, Li W. Clinical and molecular characteristics associated with survival among cancer patients receiving first-line anti-PD-1/PD-L1-based therapies. Biomarkers 2020; 25:441-448. [PMID: 32744106 DOI: 10.1080/1354750x.2020.1794042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Anti-PD-1/PD-L1-based therapy has emerged recently, and we aimed to figure out the latent value of different clinical and molecular factors to predict the efficacy of immune checkpoint inhibitors (ICIs) therapy compared with non-immunotherapy in the first-line setting. METHODS We assessed the clinical outcomes of 8711 patients in 13 trials receiving anti-PD-1/PD-L1-based therapy or non-immunotherapy as first-line treatment, and different predictors were investigated. RESULTS Overall, compared with non-immunotherapy, anti-PD-1/PD-L1-based therapy reduced the risk of death by 31% (HR 0.69, 95%CI: 0.60-0.79) for all cancers. Stratified analysis showed that the progression-free survival (PFS) benefit from anti-PD-1/PD-L1-based therapy existed in all three PD-L1 status subgroups (tumour proportion score, TPS ≥50%: HR 0.54, 95%CI: 0.38-0.78; TPS 1-49%: HR 0.56, 95%CI: 0.46-0.68; TPS <1%: HR 0.82, 95%CI: 0.73-0.91; interaction, p < 0.01). ICI therapy also prolonged PFS in males (HR 0.64, 95%CI: 0.50-0.83) and younger patients (HR 0.70, 95%CI: 0.52-0.93), and they might prolong overall survival (OS) in patients without brain metastasis (HR 0.54, 95%CI: 0.41-0.71). CONCLUSION PD-L1 expression level alone is imperfect to predict the efficacy of anti-PD-1/PD-L1-based therapies as first-line cancer treatment. Meanwhile, sex, age, and status of brain metastases might also be predictive parameters for the selection of cancer patients.
Collapse
Affiliation(s)
- Yaojie Zhou
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Jiang
- West China Medical School, Sichuan University, Chengdu, China
| | - Pengwei Ren
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Paierhati Tuersun
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Sekhar T, Thriveni P, Ramesh K, Giri Prasad P, Srihari I, Gorityala N, Rao Sagurthi S, Sankar Allam U. Green synthesis, antitubercular evaluation, and molecular docking studies of ethyl 3,5-dicyano-6-oxo-2,4-diarylpiperidine-3-carboxylate derivatives. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02519-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Sanduja M, Gupta J, Singh H, Pagare PP, Rana A. Uracil-coumarin based hybrid molecules as potent anti-cancer and anti-bacterial agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2019.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|