1
|
Napiórkowska M, Otto-Ślusarczyk D, Kurpios-Piec D, Stukan I, Gryzik M, Wojda U. BM7, a derivative of benzofuran, effectively fights cancer by promoting cancer cell apoptosis and impacting IL-6 levels. Eur J Pharmacol 2024; 978:176751. [PMID: 38897442 DOI: 10.1016/j.ejphar.2024.176751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The BM7 compound, a bromo derivative of methyl 6-acetyl-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate, was previously identified as cytotoxic to human leukaemia cells (K562 and HL60) and human cervical cancer (HeLa), while showing no toxicity to non-cancerous primary endothelial cells (HUVEC). In this study, we present the first demonstration of BM7's anticancer efficacy in vivo using a mouse chronic myeloid leukaemia xenograft model. Administered intraperitoneally in a mixture of 10% Solutol HS 15/10% ethanol, BM7 exhibited no visible toxicity and significantly reduced tumor weight, comparable to standard drugs imatinib and hydroxyurea. Further supporting its anticancer potential, a multi-model in vitro study involving seven human cancer cell lines revealed the most promising responses in colon cancer (SW480, SW620, HCT116), liver cancer (HEPG2), and breast adenocarcinoma (MDA-MB-231) cells. BM7 demonstrated multifaceted anticancer mechanisms, inducing apoptosis while elevating reactive oxygen species (ROS) levels and suppressing interleukin-6 (IL-6) release in these cell lines. These findings position BM7 as a candidate of significant interest for cancer therapy. Its ability to not only induce apoptosis but also modulate cellular processes such as ROS levels and immune responses, specifically IL-6 suppression, makes BM7 a versatile and promising agent for further exploration in the realm of cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Iga Stukan
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland; Department of General Pathology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 1 Rybacka Street, 70-204, Szczecin, Poland
| | - Marek Gryzik
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
2
|
Gazieva GA, Chegaev K. Special Issue "Development and Synthesis of Biologically Active Compounds". Int J Mol Sci 2024; 25:4015. [PMID: 38612824 PMCID: PMC11012345 DOI: 10.3390/ijms25074015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The intention of this Special Issue is to focus on new achievements in the design, preparation, and in vitro and in vivo biological evaluation of bioactive molecules that can result in the development of natural or artificial potent compounds looking for promising pharmaceuticals and agrochemicals [...].
Collapse
Affiliation(s)
- Galina A. Gazieva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy;
| |
Collapse
|
3
|
Napiórkowska M, Kumaravel P, Amboo Mahentheran M, Kiernozek-Kalińska E, Grosicka-Maciąg E. New Derivatives of 1-(3-Methyl-1-Benzofuran-2-yl)Ethan-1-one: Synthesis and Preliminary Studies of Biological Activity. Int J Mol Sci 2024; 25:1999. [PMID: 38396676 PMCID: PMC10888192 DOI: 10.3390/ijms25041999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
A set of nine derivatives, including five brominated compounds, was synthesized and the structures of these novel compounds were confirmed using 1H and 13C NMR as well as ESI MS spectra. These compounds were tested on four different cancer cell lines, chronic myelogenous leukemia (K562), prostate cancer (PC3), colon cancer (SW620), human kidney cancer (Caki 1), and on healthy human keratocytes (HaCaT). MTT results reveal that two newly developed derivatives (6 and 8) exhibit selective action towards K562 cells and no toxic effect in HaCat cells. The biological activity of these two most promising compounds was evaluated by trypan blue assay, reactive oxygen species generation, and IL-6 secretion. To investigate the proapoptotic activity of selected compounds, the two following types of tests were performed: Annexin V Apoptosis Detection Kit I and Caspase-Glo 3/7 assay. The studies of the mechanism showed that both compounds have pro-oxidative effects and increase reactive oxygen species in cancer cells, especially at 12 h incubation. Through the Caspase-Glo 3/7 assay, the proapoptotic properties of both compounds were confirmed. The Annexin V-FITC test revealed that compounds 6 and 8 induce apoptosis in K562 cells. Both compounds inhibit the release of proinflammatory interleukin 6 (IL-6) in K562 cells. Additionally, all compounds were screened for their antibacterial activities using standard and clinical strains. Within the studied group, compound 7 showed moderate activity towards Gram-positive strains in antimicrobial studies, with MIC values ranging from 16 to 64 µg/mL.
Collapse
Affiliation(s)
- Mariola Napiórkowska
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (P.K.); (M.A.M.)
| | - Pratheeba Kumaravel
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (P.K.); (M.A.M.)
| | - Mithulya Amboo Mahentheran
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland; (P.K.); (M.A.M.)
| | - Ewelina Kiernozek-Kalińska
- Department of Immunology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland
| | - Emilia Grosicka-Maciąg
- Department of Biochemistry and Laboratory Diagnostic, Collegium Medicum Cardinal Stefan Wyszyński University, Kazimierza Wóycickiego 1 Str., 01-938 Warsaw, Poland;
| |
Collapse
|
4
|
Lu D, Zhou Y, Li Q, Luo J, Jiang Q, He B, Tang Q. Synthesis, In Vitro Antitumor Activity and Molecular Mechanism of Novel Furan Derivatives and their Precursors. Anticancer Agents Med Chem 2020; 20:1475-1486. [PMID: 32329695 DOI: 10.2174/1871520620666200424130204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/05/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Compounds featuring furan nucleus exhibit diverse biological properties. Lots of furan derivatives have been explored as pharmaceutical compounds. Hence it is of great interest to explore furan derivatives and their precursors as antitumor agents. OBJECTIVE A series of novel furan derivatives and their precursors (1-36) were synthesized from α-haloketones and β-dicarbonyl compounds. METHODS The reactions between β-dicarbonyl compounds and α-haloketones under basic conditions produced tricarbonyls or dihydrofurans, which were then condensed into their corresponding furan products. Their potential antiproliferative activity in vitro against two human tumor cell lines-cervical (HeLa) and colorectal (SW620) was evaluated using CCK-8 assay. Compounds 1 and 24 were selected for Western blot analysis. RESULTS Pronounced anti-proliferative effect in the micromolar level was observed for compounds (1, 4, 17, 20, 21, 24, 27, 31 and 32) in HeLa cells, with their IC50 values ranging from 0.08 to 8.79μM. Additionally, furan compounds (24, 26, 32 and 35) had moderate to potent anti-proliferative activity against the SW620 cell line. Furthermore, the possible targets of these compounds were explored by Western blot analysis. The results indicated that the candidates (compounds 1 and 24) exhibited excellent antiproliferative activity, which may be mediated by promoting the activity of PTEN to suppress PI3K/Akt and Wnt/β-catenin signaling. CONCLUSION Most of the furan derivatives and their precursors reported herein exhibited moderate to excellent anti-proliferative activity against HeLa cell line and/or SW620 cell line. Compounds 1 and 24, as well as their analogues may be developed as promising anti-cancer agents.
Collapse
Affiliation(s)
- Dan Lu
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, No.1 Yixueyuan Road, Chongqing 400016, China
| | - Ya Zhou
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, No.1 Yixueyuan Road, Chongqing 400016, China
| | - Qin Li
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, No.1 Yixueyuan Road, Chongqing 400016, China
| | - Juan Luo
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, No.1 Yixueyuan Road, Chongqing 400016, China
| | - Qihua Jiang
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, No.1 Yixueyuan Road, Chongqing 400016, China
| | - Baicheng He
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, No.1 Yixueyuan Road, Chongqing 400016, China
| | - Qiang Tang
- College of Pharmacy, Center for Lab Teaching and Management, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, No.1 Yixueyuan Road, Chongqing 400016, China
| |
Collapse
|
5
|
New Thalidomide-Resembling Dicarboximides Target ABC50 Protein and Show Antileukemic and Immunomodulatory Activities. Biomolecules 2019; 9:biom9090446. [PMID: 31487824 PMCID: PMC6770581 DOI: 10.3390/biom9090446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
We identified novel dicarboximides that were selectively cytotoxic towards human leukemia cells. Using chemical and biological methods, we characterized the biological activity, identified cellular protein targets and defined the mechanism of action of the test dicarboximides. The reported IC50 values (concentration required to reduce cell survival fraction to 50% of control) of selected dicarboximides were similar or lower than IC50 of registered anticancer drugs, for example cytarabine, sorafenib, irinotecan. Test compounds induced apoptosis in chronic myelogenous (K562) and acute lymphoblastic (MOLT-4) leukemia cells by activation of receptor and mitochondrial apoptotic pathways and increased the expression of proapoptotic genes (BAX, NOXA, HTRA2, TNFRSF10B, ESRRBL1). Selected dicarboximides displayed immunomodulatory activity and downregulated IKZF1 and IKZF3 transcription factors in K562 and MOLT-4 leukemia cells. ATP-binding cassette protein 50 (ABC50) was identified as a target for dicarboximides. Cancer cells with knocked down ABC50 showed increased resistance to dicarboximides. Based on the structure of dicarboximides and thalidomide, novel proteolysis-targeting chimeras (PROTACs) were synthesized and used as tools to downregulate ABC50 in leukemia cells.
Collapse
|
6
|
Synthesis of New Derivatives of Benzofuran as Potential Anticancer Agents. Molecules 2019; 24:molecules24081529. [PMID: 31003438 PMCID: PMC6514909 DOI: 10.3390/molecules24081529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/02/2022] Open
Abstract
The results of our previous research indicated that some derivatives of benzofurans, particularly halogeno-derivatives, are selectively toxic towards human leukemia cells. Continuing our work with this group of compounds we here report new data on the synthesis as well as regarding the physico-chemical and biological characterization of fourteen new derivatives of benzofurans, including six brominated compounds. The structures of all new compounds were established by spectroscopic methods (1H- and, 13C-NMR, ESI MS), and elemental analyses. Their cytotoxicity was evaluated against K562 (leukemia), MOLT-4 (leukemia), HeLa (cervix carcinoma), and normal cells (HUVEC). Five compounds (1c, 1e, 2d, 3a, 3d) showed significant cytotoxic activity against all tested cell lines and selectivity for cancer cell lines. The SAR analysis (structure-activity relationship analysis) indicated that the presence of bromine introduced to a methyl or acetyl group that was attached to the benzofuran system increased their cytotoxicity both in normal and cancer cells.
Collapse
|