1
|
Pachal S, Kumar H, Jain R, Goel B, Kesharwani S, Kesharwani SS, Jain V. A review of the current status of biological effects of plant-derived therapeutics in breast cancer. Mol Biol Rep 2025; 52:159. [PMID: 39853420 DOI: 10.1007/s11033-025-10261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Phytochemicals are bioactive secondary plant metabolites found in high concentrations in fruits, grains, and vegetables. Recent studies provide evidence of usage of plant-based diets rich in phytochemicals and their corelation to reduction in cancer incidence. Several phytochemicals have demonstrated effectiveness as chemotherapeutic agents against various cancers, including breast cancer. Breast cancer (BC) is a major worldwide medical issue owing to its high incidence, especially in women. It is the most often detected malignancy and an important trigger of mortality in women. Various chemotherapeutics along with radiotherapy are being investigated as potential treatment options for breast cancer. However, multidrug resistance, toxicity to normal cells, and other adverse effects limit the usage of chemotherapeutics in breast cancer. Cancer treatment with dietary phytochemicals is a highly effective approach that is currently gaining widespread attention. This manuscript intends to describe the existing data on the anticancer effects of various phytochemicals, including their preclinical exploration against breast cancer. Phytochemicals are broadly categorized, with an explanation of their role in breast cancer prognosis through various signalling pathways, preclinical status, physicochemical property analysis using Data Warrior, and evidence on individual phototherapeutics.
Collapse
Affiliation(s)
- Shantanu Pachal
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bhawna Goel
- Department of Pharmacy, School of Medical and Allied Sciences, G D Goenka University, Gurugram, 122103, India
| | - Sharyu Kesharwani
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
- Department of Chemistry & Biochemistry, Boise State University, 1910 University Dr Boise, Idaho, 83725, USA
| | | | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India.
| |
Collapse
|
2
|
Zasheva D, Mladenov P, Zapryanova S, Gospodinova Z, Georgieva M, Alexandar I, Velinov V, Djilianov D, Moyankova D, Simova-Stoilova L. Cytotoxic Effects of Plant Secondary Metabolites and Naturally Occurring Bioactive Peptides on Breast Cancer Model Systems: Molecular Mechanisms. Molecules 2024; 29:5275. [PMID: 39598664 PMCID: PMC11596968 DOI: 10.3390/molecules29225275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Breast cancer is the second leading cause of death among women, and the number of mortal cases in diagnosed patients is constantly increasing. The search for new plant compounds with antitumor effects is very important because of the side effects of conventional therapy and the development of drug resistance in cancer cells. The use of plant substances in medicine has been well known for centuries, but the exact mechanism of their action is far from being elucidated. The molecular mechanisms of cytotoxicity exerted by secondary metabolites and bioactive peptides of plant origin on breast cancer cell lines are the subject of this review.
Collapse
Affiliation(s)
- Diana Zasheva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria; (D.Z.); (S.Z.)
| | - Petko Mladenov
- Agrobioinstitute, Agricultural Academy, bul. “Dragan Tsankov” 8, 1164 Sofia, Bulgaria; (P.M.); (D.D.); (D.M.)
| | - Silvina Zapryanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria; (D.Z.); (S.Z.)
| | - Zlatina Gospodinova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.G.); (V.V.)
| | - Mariyana Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.G.); (V.V.)
| | - Irina Alexandar
- Institute of Molecular Biology “Rumen Tzanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Valentin Velinov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.G.); (V.V.)
| | - Dimitar Djilianov
- Agrobioinstitute, Agricultural Academy, bul. “Dragan Tsankov” 8, 1164 Sofia, Bulgaria; (P.M.); (D.D.); (D.M.)
| | - Daniela Moyankova
- Agrobioinstitute, Agricultural Academy, bul. “Dragan Tsankov” 8, 1164 Sofia, Bulgaria; (P.M.); (D.D.); (D.M.)
| | - Lyudmila Simova-Stoilova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.G.); (V.V.)
| |
Collapse
|
3
|
Luo W, Chang G, Lin D, Xie H, Sun H, Li Z, Mo S, Wang R, Wang Y, Zheng Z. 3,3'-((3,4,5-trifluoropHenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) inhibit lung cancer cell proliferation and migration. PLoS One 2024; 19:e0303186. [PMID: 38776295 PMCID: PMC11111047 DOI: 10.1371/journal.pone.0303186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/19/2024] [Indexed: 05/24/2024] Open
Abstract
Lung cancer is a major public health challenge and, despite therapeutic improvements, is the first leading cause of cancer worldwide. The current cure rate from advanced cancer treatment is excessively low. Therefore, it is of great importance to identify novel, potent and less toxic anticancer agents for the treatment of lung cancer. The aim of our research is to synthesize a new biscoumarin 3,3'-((3,4,5-trifluorop -phenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (C35) as an anticancer agent. C35 was simply prepared by 4-hydroxycoumarin and 3,4,5-trifluorobenzaldehyde under ethanol and its structure was analyzed by spectroscopic analyses. The anti-proliferation effect of C35 was detected using CCK-8 assay. Migration abilities were measured by Transwell assay. The expression of correlated proteins was determined by Western blot. The results showed that C35 displayed strong cytostatic effects on lung cancer cell proliferation. In addition, C35 possessed a significant inhibition of migration by reducing the expression of matrix metalloproteinases-2 (MMP-2) and MMP-9 in lung cancer cells. Furthermore, C35 treatment suppressed the phosphorylation of p38 in lung cancer cells. Moreover, in vivo experiments were carried out, in which we treated Lewis tumor-bearing C57 mice via intraperitoneal injection of C35. Results showed that C35 inhibited tumor growth in vivo. In conclusion, our study demonstrated the anticancer activity of C35 via suppression of lung cancer cell proliferation and migration, which is possibly involved with the inhibition of the p38 pathway.
Collapse
Affiliation(s)
- Wenhui Luo
- School of Medicine, Foshan University, Foshan, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Formula Granule, Guangdong Yifang Pharmaceutical Co., Ltd., Foshan, Guangdong Province, PR China
| | - Guoxin Chang
- College of Traditional Chinese Medicine, Guangdong Pharmacuetical University, Guangzhou, Guangdong Province, PR China
| | - Dingmei Lin
- College of Traditional Chinese Medicine, Guangdong Pharmacuetical University, Guangzhou, Guangdong Province, PR China
| | - Hongyi Xie
- College of Traditional Chinese Medicine, Guangdong Pharmacuetical University, Guangzhou, Guangdong Province, PR China
| | - Huilong Sun
- School of Medicine, Foshan University, Foshan, Guangdong Province, PR China
| | - Zhibin Li
- School of Medicine, Foshan University, Foshan, Guangdong Province, PR China
| | - Shirong Mo
- School of Medicine, Foshan University, Foshan, Guangdong Province, PR China
| | - Ruixue Wang
- School of Medicine, Foshan University, Foshan, Guangdong Province, PR China
| | - Yan Wang
- College of Traditional Chinese Medicine, Guangdong Pharmacuetical University, Guangzhou, Guangdong Province, PR China
| | - Zhaoguang Zheng
- School of Medicine, Foshan University, Foshan, Guangdong Province, PR China
| |
Collapse
|
4
|
Huang HT, Huang CY, Lee CJ, Sun BJ, Jhang ZW, Wen CC, Wang YH, Li TS, Chern CY, Chen YH. The angiogenesis-modulating effects of coumarin-derivatives. Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109862. [PMID: 38382586 DOI: 10.1016/j.cbpc.2024.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Coumarin is a natural compound that is rich in plants. Coumarin and its derivates were reported to have many biological activities, such as anti-bacterial, anti-tumor, and anti-coagulation. In this study, we examined the angiogenic modulating activities of six previously synthesized coumarin derivatives (Compound #1-#6) in zebrafish embryos and further confirmed them in a chick model. According to the survival rate in a zebrafish model, Compound #1 (100 %), #2 (82.5-100 %), and #4 (100 %) showed much less toxicity than Compound #3 (19.2-100 %), #5 (0-100 %), and #6 (0-100 %). Using a green blood vessel fluorescent transgenic fish Tg(fli1:egfp) to record the angiogenesis-modulating effects of Compound #1, #2, and #4, we found that Compound #2 had the highest effects in interfering intersegmental vessel growth, subintestinal vein growth, and caudal vein plexus remodeling. Chick chorioallantoic membrane (CAM) assay also showed that Compound #2 exposure led to a reduction of blood vessel growth. Real-time PCR experiments revealed that Compound #2 significantly changed the expression of vascular growth-related genes flt1, cdh5, and nrp1a in zebrafish. Based on our data from zebrafish and chick models, a new coumarin-derivative (Compound #2) possesses anti-angiogenic activity with low toxicity, but further investigation in mammal models is asked to confirm our findings.
Collapse
Affiliation(s)
- Han-Ting Huang
- Department of Chemistry, Tamkang University, Tamsui, Taiwan
| | | | - Chih-Jou Lee
- Department of Chemistry, Tamkang University, Tamsui, Taiwan
| | - Bo-Jie Sun
- Department of Chemistry, Tamkang University, Tamsui, Taiwan
| | - Zong-Wei Jhang
- Department of Applied Chemistry, National Chia-Yi University, Chiayi City 600, Taiwan
| | - Chi-Chung Wen
- Department of Mathematics, Tamkang University, Tamsui, New Taipei City 25137, Taiwan
| | - Yun-Hsin Wang
- Department of Chemistry, Tamkang University, Tamsui, Taiwan
| | - Tao-Sheng Li
- Stem Cell Biology Laboratory, Atomic Bomb Disease Institute, Nagasaki University, Japan
| | - Ching-Yuh Chern
- Department of Applied Chemistry, National Chia-Yi University, Chiayi City 600, Taiwan.
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Tamsui, Taiwan.
| |
Collapse
|
5
|
Yadav AK, Maharjan Shrestha R, Yadav PN. Anticancer mechanism of coumarin-based derivatives. Eur J Med Chem 2024; 267:116179. [PMID: 38340509 DOI: 10.1016/j.ejmech.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The structural motif of coumarins is related with various biological activities and pharmacological properties. Both natural coumarin extracted from various plants or a new coumarin derivative synthesized by modification of the basic structure of coumarin, in vitro experiments showed that coumarins are a promising class of anti-tumor agents with high selectivity. Cancer is a complex and multifaceted group of diseases characterized by the uncontrolled and abnormal growth of cells in the body. This review focuses on the anticancer mechanism of various coumarins synthesized and isolated in more than a decade. Isopentenyloxycoumarins inhibit angiogenesis by reducing CCl2 chemokine levels. Ferulin C is a potent colchicine-binding agent that destabilizes microtubules, exhibiting antiproliferative and anti-metastatic effects in breast cancer cells through PAK1 and PAK2-mediated signaling. Trimers of triphenylethylene-coumarin hybrids demonstrated significant proliferation inhibition in HeLa, A549, K562, and MCF-7 cell lines. Platinum(IV) complexes with 4-hydroxycoumarin have the potential for high genotoxicity against tumor cells, inducing apoptosis in SKOV-3 cells by up-regulating caspase 3 and caspase 9 expression. Derivatives of 3-benzyl coumarin seco-B-ring induce apoptosis, mediated through the PI3K/Akt/mTOR signaling pathway. Sesquiterpene coumarins inhibit the efflux pump of multidrug resistance-associated protein. Coumarin imidazolyl derivatives inhibit the aromatase enzyme, a major contributor to estrogen overproduction in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Anand Kumar Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| | | | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal.
| |
Collapse
|
6
|
Matos MJ, Uriarte E, Santana L. 3-Phenylcoumarins as a Privileged Scaffold in Medicinal Chemistry: The Landmarks of the Past Decade. Molecules 2021; 26:6755. [PMID: 34771164 PMCID: PMC8587835 DOI: 10.3390/molecules26216755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/27/2022] Open
Abstract
3-Phenylcoumarins are a family of heterocyclic molecules that are widely used in both organic and medicinal chemistry. In this overview, research on this scaffold, since 2010, is included and discussed, focusing on aspects related to its natural origin, synthetic procedures and pharmacological applications. This review paper is based on the most relevant literature related to the role of 3-phenylcoumarins in the design of new drug candidates. The references presented in this review have been collected from multiple electronic databases, including SciFinder, Pubmed and Mendeley.
Collapse
Affiliation(s)
- Maria J Matos
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Wu Y, Xu J, Liu Y, Zeng Y, Wu G. A Review on Anti-Tumor Mechanisms of Coumarins. Front Oncol 2020; 10:592853. [PMID: 33344242 PMCID: PMC7746827 DOI: 10.3389/fonc.2020.592853] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
Coumarins are a class of compound with benzopyrone as their basic structure. Due to abundant sources, easy synthesis, and various pharmacological activities, coumarins have attracted extensive attention from researchers. In particular, coumarins have very significant anti-tumor abilities and a variety of anti-tumor mechanisms, including inhibition of carbonic anhydrase, targeting PI3K/Akt/mTOR signaling pathways, inducing cell apoptosis protein activation, inhibition of tumor multidrug resistance, inhibition of microtubule polymerization, regulating the reactive oxygen species, and inhibition of tumor angiogenesis, etc. This review focuses on the mechanisms and the research progress of coumarins against cancers in recent years.
Collapse
Affiliation(s)
- Yi Wu
- School of Stomatology, Central South University, Changsha, China
| | - Jing Xu
- School of Stomatology, Central South University, Changsha, China
| | - Yiting Liu
- School of Stomatology, Central South University, Changsha, China
| | - Yiyu Zeng
- School of Stomatology, Central South University, Changsha, China
| | - Guojun Wu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
8
|
Al-Warhi T, Sabt A, Elkaeed EB, Eldehna WM. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg Chem 2020; 103:104163. [DOI: 10.1016/j.bioorg.2020.104163] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
|
9
|
Küpeli Akkol E, Genç Y, Karpuz B, Sobarzo-Sánchez E, Capasso R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers (Basel) 2020; 12:cancers12071959. [PMID: 32707666 PMCID: PMC7409047 DOI: 10.3390/cancers12071959] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the most common causes of disease-related deaths worldwide. Despite the discovery of many chemotherapeutic drugs that inhibit uncontrolled cell division processes for the treatment of various cancers, serious side effects of these drugs are a crucial disadvantage. In addition, multi-drug resistance is another important problem in anticancer treatment. Due to problems such as cytotoxicity and drug resistance, many investigations are being conducted to discover and develop effective anticancer drugs. In recent years, researchers have focused on the anticancer activity coumarins, due to their high biological activity and low toxicity. Coumarins are commonly used in the treatment of prostate cancer, renal cell carcinoma and leukemia, and they also have the ability to counteract the side effects caused by radiotherapy. Both natural and synthetic coumarin derivatives draw attention due to their photochemotherapy and therapeutic applications in cancer. In this review, a compilation of various research reports on coumarins with anticancer activity and investigation and a review of structure-activity relationship studies on coumarin core are presented. Determination of important structural features around the coumarin core may help researchers to design and develop new analogues with a strong anticancer effect and reduce the potential side effects of existing therapeutics.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey;
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-312-2023185 (E.K.A); +39-081-678664 (R.C.)
| | - Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye 06100, Ankara, Turkey;
| | - Büşra Karpuz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Naples), Italy
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-312-2023185 (E.K.A); +39-081-678664 (R.C.)
| |
Collapse
|
10
|
Majnooni MB, Fakhri S, Smeriglio A, Trombetta D, Croley CR, Bhattacharyya P, Sobarzo-Sánchez E, Farzaei MH, Bishayee A. Antiangiogenic Effects of Coumarins against Cancer: From Chemistry to Medicine. Molecules 2019; 24:molecules24234278. [PMID: 31771270 PMCID: PMC6930449 DOI: 10.3390/molecules24234278] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis, the process of formation and recruitment of new blood vessels from pre-existing vessels, plays an important role in the development of cancer. Therefore, the use of antiangiogenic agents is one of the most critical strategies for the treatment of cancer. In addition, the complexity of cancer pathogenicity raises the need for multi-targeting agents. Coumarins are multi-targeting natural agents belonging to the class of benzopyrones. Coumarins have several biological and pharmacological effects, including antimicrobial, antioxidant, anti-inflammation, anticoagulant, anxiolytic, analgesic, and anticancer properties. Several reports have shown that the anticancer effect of coumarins and their derivatives are mediated through targeting angiogenesis by modulating the functions of vascular endothelial growth factor as well as vascular endothelial growth factor receptor 2, which are involved in cancer pathogenesis. In the present review, we focus on the antiangiogenic effects of coumarins and related structure-activity relationships with particular emphasis on cancer.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (A.S.); (D.T.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (A.S.); (D.T.)
| | | | - Piyali Bhattacharyya
- Escuela de Ciencias de la Salud, Universidad Ana G. Méndez, Recinto de Gurabo, Gurabo, PR 00778, USA;
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; or
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|