1
|
Peng C, Wang Y, Guo Y, Li J, Liu F, Fu Y, Yu Y, Zhang C, Fu J, Han F. A literature review on signaling pathways of cervical cancer cell death-apoptosis induced by Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118491. [PMID: 38936644 DOI: 10.1016/j.jep.2024.118491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cervical cancer (CC) is a potentially lethal disorder that can have serious consequences for a woman's health. Because early symptoms are typically only present in the middle to late stages of the disease, clinical diagnosis and treatment can be challenging. Traditional Chinese medicine (TCM) has been shown to have unique benefits in terms of alleviating cancer clinical symptoms, lowering the risk of recurrence after surgery, and reducing toxic side effects and medication resistance after radiation therapy. It has also been shown to improve the quality of life for patients. Because of its improved anti-tumor effectiveness and biosafety, it could be considered an alternative therapy option. This study examines how TCM causes apoptosis in CC cells via signal transduction, including the active components and medicinal tonics. It also intends to provide a reliable clinical basis and protocol selection for the TCM therapy of CC. METHODS The following search terms were employed in PubMed, Web of Science, Embase, CNKI, Wanfang, VIP, SinoMed, and other scientific databases to retrieve pertinent literature on "cervical cancer," "apoptosis," "signaling pathway," "traditional Chinese medicine," "herbal monomers," "herbal components," "herbal extracts," and "herbal formulas." RESULTS It has been demonstrated that herbal medicines can induce apoptosis in cells of the cervix, a type of cancer, by influencing the signaling pathways involved. CONCLUSION A comprehensive literature search was conducted, and 148 papers from the period between January 2017 and December 2023 were identified as eligible for inclusion. After a meticulous process of screening, elimination and summary, generalization, and analysis, it was found that TCM can regulate multiple intracellular signaling pathways and related molecular targets, such as STAT3, PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB, p53, HIF-1α, Fas/FasL and so forth. This regulatory capacity was observed to induce apoptosis in cervical cancer cells. The study of the mechanism of TCM against cervical cancer and the screening of new drug targets is of great significance for future research in this field. The results of this study will provide ideas and references for the future development of Chinese medicine in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ying Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fangyuan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Chengxin Zhang
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jiangmei Fu
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Fengjuan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
2
|
Allegra A, Mirabile G, Caserta S, Stagno F, Russo S, Pioggia G, Gangemi S. Oxidative Stress and Chronic Myeloid Leukemia: A Balance between ROS-Mediated Pro- and Anti-Apoptotic Effects of Tyrosine Kinase Inhibitors. Antioxidants (Basel) 2024; 13:461. [PMID: 38671909 PMCID: PMC11047441 DOI: 10.3390/antiox13040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The balanced reciprocal translocation t (9; 22) (q34; q11) and the BCR-ABL fusion gene, which produce p210 bcr-abl protein production with high tyrosine kinase activity, are characteristics of chronic myeloid leukemia, a myeloproliferative neoplasm. This aberrant protein affects several signaling pathways connected to both apoptosis and cell proliferation. It has been demonstrated that tyrosine kinase inhibitor treatment in chronic myeloid leukemia acts by inducing oxidative stress and, depending on its level, can activate signaling pathways responsible for either apoptosis or survival in leukemic cells. Additionally, oxidative stress and reactive oxygen species generation also mediate apoptosis through genomic activation. Furthermore, it was shown that oxidative stress has a role in both BCR-ABL-independent and BCR-ABL-dependent resistance pathways to tyrosine kinases, while patients with chronic myeloid leukemia were found to have a significantly reduced antioxidant level. The ideal environment for tyrosine kinase inhibitor therapy is produced by a favorable oxidative status. We discuss the latest studies that aim to manipulate the redox system to alter the apoptosis of cancerous cells.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Fabio Stagno
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Sabina Russo
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood ‘Gaetano Barresi’, University of Messina, 98125 Messina, Italy; (G.M.); (S.C.); (F.S.); (S.R.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy;
| |
Collapse
|
3
|
Wang S, Zhang Y, Yang X, Wang K, Yang X, Zhang B, Zhang B, Bie Q. Betulinic acid arrests cell cycle at G2/M phase by up-regulating metallothionein 1G inhibiting proliferation of colon cancer cells. Heliyon 2024; 10:e23833. [PMID: 38261922 PMCID: PMC10797151 DOI: 10.1016/j.heliyon.2023.e23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Betulinic acid (BA) is a pentacyclic triterpene found in many plant species and has a broad-spectrum anti-tumor effect in various cancers, including colon cancer (CRC). However, its anticancer mechanism in CRC is no clear. RNA sequencing and bioinformatics analysis showed BA up-regulated 378 genes and down-regulated 137 genes in HT29 cells, while 2303 up-regulated and 1041 down-regulated genes were found in SW480 cells. KEGG enrichment analysis showed BA significantly stimulated the expression of metallothionein 1 (MT1) family genes in both HT29 and SW480 cells. Metallothionein 1G (MT1G) was the gene with the highest upregulation of MT1 family genes induced by BA dose-dependently. High MT1G expression enhanced the sensitivity of CRC cells to BA, whereas, MT1G knockdown had the opposite effect in vitro and in vivo. GSEA and GSCA showed genes affected by BA treatment were involved in cell cycle and G2/M checkpoint in CRC. Flow cytometry further exhibited BA reduced the percentage of G0/G1 cells and increased the percentage of G2/M cells in a dose-dependent manner, which could be rescued by MT1G knockdown. Moreover, MT1G also counteracted the BA-induced changes in cell cycle-related proteins (CDK2 and CDK4) and p-Rb. In summary, we have revealed a new anti-tumor mechanism that BA altered the cell cycle progression of CRC cells by upregulating MT1G gene, thereby inhibiting the proliferation of CRC cells.
Collapse
Affiliation(s)
- Sen Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuqin Zhang
- Blood Transfusion Department, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xiaxia Yang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Kexin Wang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xiao Yang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Baogui Zhang
- Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, Shandong, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Willig JB, de Couto NMG, Vianna DRB, Mariot CDS, Gnoatto SCB, Buffon A, Pilger DA. Betulinic Acid-Brosimine B Hybrid Compound Has a Synergistic Effect with Imatinib in Chronic Myeloid Leukemia Cell Line, Modulating Apoptosis and Autophagy. Pharmaceuticals (Basel) 2023; 16:ph16040586. [PMID: 37111343 PMCID: PMC10142704 DOI: 10.3390/ph16040586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the formation of the BCR-ABL (breakpoint cluster region-Abelson) oncoprotein. As many patients display therapeutic resistance, the development of new drugs based on semisynthetic products represents a new potential therapeutic approach for treating the disease. In this study, we investigated the cytotoxic activity, possible mechanism of action of a hybrid compound of betulinic acid (BA) and brosimine B in CML cell lines that are sensitive (K-562) and resistant (K-562R) to imatinib, in addition to evaluating lower doses of imatinib in combination with the hybrid compound. The effects of the compound, and its combination with imatinib, on apoptosis, cell cycle, autophagy and oxidative stress were determined. The compound was cytotoxic in K-562 (23.57 ± 2.87 μM) and K-562R (25.80 ± 3.21 μM) cells, and a synergistic effect was observed when it was associated with imatinib. Apoptosis was mediated by the caspase 3 and 9 intrinsic pathway, and cell cycle evaluation showed arrest at G0/G1. In addition, the hybrid compound increased the production of reactive oxygen species and induced autophagy by increasing LC3II and Beclin-1 mRNA levels. Results suggest that this hybrid compound causes the death of both imatinib-sensitive and -resistant cell lines and may hold potential as a new anticancer treatment against CML.
Collapse
Affiliation(s)
- Julia Biz Willig
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Nádia Miléo Garcês de Couto
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory of Phytochemistry and Organic Synthesis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Débora Renz Barreto Vianna
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Camila da Silveira Mariot
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Simone Cristina Baggio Gnoatto
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory of Phytochemistry and Organic Synthesis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Andréia Buffon
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Diogo André Pilger
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| |
Collapse
|
5
|
Zhong Y, Liang N, Liu Y, Cheng MS. Recent progress on betulinic acid and its derivatives as antitumor agents: a mini review. Chin J Nat Med 2021; 19:641-647. [PMID: 34561074 DOI: 10.1016/s1875-5364(21)60097-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/01/2023]
Abstract
Natural products are one of the important sources for the discovery of new drugs. Betulinic acid (BA), a pentacyclic triterpenoid widely distributed in the plant kingdom, exhibits powerful biological effects, including antitumor activity against various types of cancer cells. A considerable number of BA derivatives have been designed and prepared to remove their disadvantages, such as poor water solubility and low bioavailability. This review summarizes the current studies of the structural diversity of antitumor BA derivatives within the last five years, which provides prospects for further research on the structural modification of betulinic acid.
Collapse
Affiliation(s)
- Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Liang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
6
|
Kowalczyk T, Sitarek P, Toma M, Rijo P, Domínguez-Martín E, Falcó I, Sánchez G, Śliwiński T. Enhanced Accumulation of Betulinic Acid in Transgenic Hairy Roots of Senna obtusifolia Growing in the Sprinkle Bioreactor and Evaluation of Their Biological Properties in Various Biological Models. Chem Biodivers 2021; 18:e2100455. [PMID: 34185351 DOI: 10.1002/cbdv.202100455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022]
Abstract
Betulinic acid, which is found in transgenic roots of Senna obtusifolia (L.) H.S.Irwin & Barneby, is a pentacyclic triterpene with distinctive pharmacological activities. In this study, we report the differences in the content of betulinic acid and selected anthraquinones in transgenic S. obtusifolia hairy roots with overexpression of the PgSS1 gene (SOPSS2 line) and in transformed hairy roots without this genetic construct (SOA41 line). Both hairy root lines grew in 10 L sprinkle bioreactor. Additionally, the extracts obtained from this plant material were used for biological tests. Our results demonstrated that the SOPSS2 hairy root cultures from the bioreactor showed an increase in the content of betulinic acid (38.125 mg/g DW), compared to the SOA41 hairy root line (4.213 mg/g DW). Biological studies have shown a cytotoxic and antiproliferative effect on U-87MG glioblastoma cells, and altering the level of apoptotic proteins (Bax, p53, Puma and Noxa). Antimicrobial properties were demonstrated for both tested extracts, with a stronger effect of SOPSS2 extract. Moreover, both extracts showed moderate antiviral properties on norovirus surrogates.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1 Łódź, 90-151, Lodz, Poland
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Patricia Rijo
- CBIOS - Research Center for Biosciences & Health technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal.,iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Eva Domínguez-Martín
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Campus universitario. Ctra. Madrid-Barcelona km. 33,600, 28805, Alcalá de Henares, Spain
| | - Irene Falcó
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, Paterna, 46980, Valencia, Spain
| | - Gloria Sánchez
- Departament of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, Paterna, 46980, Valencia, Spain
| | - Tomasz Śliwiński
- Department of Medical Biochemistry, Medical University of Lodz, 6/8 Mazowiecka Str, 92-215, Lodz, Poland
| |
Collapse
|
7
|
Mbaveng AT, Chi GF, Bonsou IN, Abdelfatah S, Tamfu AN, Yeboah EMO, Kuete V, Efferth T. N-acetylglycoside of oleanolic acid (aridanin) displays promising cytotoxicity towards human and animal cancer cells, inducing apoptotic, ferroptotic and necroptotic cell death. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153261. [PMID: 32559584 DOI: 10.1016/j.phymed.2020.153261] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND The discovery of novel phytochemicals represents a reasonable approach to fight malignancies, especially those which are resistant to standard chemotherapy. PURPOSE We evaluated the cytotoxic potential of a naturally occurring N-acetylglycoside of oleanolic acid, aridanin, on 18 cancer cell lines, including sensitive and drug-resistant phenotypes mediated by P-glycoprotein, BCRP, p53 knockout, deletion-mutated EGFR, or BRAF mutations. Furthermore, metastasizing B16/F10 cells, HepG2 hepatocarcinoma and normal AML12 hepatocytes were investigated. The mechanisms of aridanin-induced cell death was further investigated. METHODS The resazurin reduction assay (RRA) was applied to evaluate the cytotoxicity, autophagy, ferroptotic and necroptotic cell death. CCRF-CEM leukemia cells were used for all mechanistic studies. A caspase-Glo assay was applied to evaluate the caspase activities. Flow cytometry was applied for the analyses of cell cycle (PI staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP; JC-1) and reactive oxygen species (ROS; H2DCFH-DA). RESULTS Aridanin and doxorubicin (positive control) inhibited the proliferation of all cancer cell lines tested. The IC50 values for aridanin varied from 3.18 µM (CCRF-CEM cells) to 9.56 µM (HepG2 cells). Aridanin had considerably lower IC50 values than that of doxorubicin against multidrug-resistant CEM/ADR5000 cells and melanoma cell lines (MaMel-80a, Mel-2a, MV3, and SKMel-505). Aridanin induced apoptosis in CCRF-CEM cells through increase of ROS levels and MMP breakdown, and to a lesser extent via caspases activation. Aridanin also induced ferroptotic and necroptotic cell death. CONCLUSION The present study opens good perpectives for the use of this phytochemical as an anticancer drug to combat multi-facorial resistance to established chemotherapeutics.
Collapse
Affiliation(s)
- Armelle T Mbaveng
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Godloves F Chi
- Department of Chemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon.
| | - Idrios N Bonsou
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Alfred N Tamfu
- Chemical Engineering and Mineral Industries School, University of Ngaoundere, 454 Ngaoundere Cameroon.
| | - Elisabeth M O Yeboah
- Department of Chemistry, University of Botswana, Private Bag 0022, Gaborone, Botswana.
| | - Victor Kuete
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|