1
|
Zhang Z, Luo Y, Liu Y, Ren J, Fang Z, Han Y. An Inflammation-Related lncRNA Signature for Prognostic Prediction in Colorectal Cancer. Cancer Rep (Hoboken) 2024; 7:e70043. [PMID: 39639610 PMCID: PMC11621381 DOI: 10.1002/cnr2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) represents a commonly diagnosed malignancy affecting the digestive system. Mounting evidence shows long noncoding RNAs (lncRNAs) contribute to carcinogenesis. However, inflammation-related lncRNAs (IRLs) regulating CRC are poorly defined. AIMS The current study aimed to develop an IRL signature for predicting prognosis in CRC and to examine the involved molecular mechanism. METHODS AND RESULTS RNA-seq findings and patient data were retrieved from The Cancer Genome Atlas (TCGA), and inflammation-associated genes were obtained from the GeneCards database. IRLs with differential expression were determined with "limma" in R. Using correlation and univariable Cox analyses, prognostic IRLs were identified. The least absolute shrinkage and selection operator (LASSO) algorithm was employed to construct a prognostic model including 13 IRLs. The model's prognostic value was examined by Kaplan-Meier (K-M) survival curve and receiver operating characteristic (ROC) curve analyses. Furthermore, the association of the signature with the immune profile was assessed. Finally, RT-qPCR was carried out for verifying the expression of inflammation-related lncRNAs in nonmalignant and malignant tissue samples. A model containing 13 inflammation-related lncRNAs was built and utilized to classify cases into two risk groups based on risk score. The signature-derived risk score had a higher value in predicting survival compared with traditionally used clinicopathological properties in CRC cases. In addition, marked differences were detected in immune cells between the two groups, including CD4+ T cells and M2 macrophages. Furthermore, RT-qPCR confirmed the expression patterns of these 13 lncRNAs were comparable to those of the TCGA-CRC cohort. CONCLUSION The proposed 13-IRL signature is a promising biomarker and may help the clinical decision-making process and improve prognostic evaluation in CRC.
Collapse
Affiliation(s)
- Zhenling Zhang
- Department of Gastroenterology, the Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhaiChina
| | - Yingshu Luo
- Department of Gastroenterology, the Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhaiChina
| | - Yuan Liu
- Department of Gastroenterology, the Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhaiChina
| | - Jiangnan Ren
- Department of Gastroenterology, the Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhaiChina
| | - Zhaoxiong Fang
- Department of Gastroenterology, the Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhaiChina
| | - Yanzhi Han
- Department of Gastroenterology, the Fifth Affiliated HospitalSun Yat‐Sen UniversityZhuhaiChina
| |
Collapse
|
2
|
Li S, Xie X, Peng F, Du J, Peng C. Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review). Int J Oncol 2022; 61:101. [PMID: 35796022 PMCID: PMC9291250 DOI: 10.3892/ijo.2022.5391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022] Open
Abstract
Gliomas are a primary types of intracranial malignancies and are characterized by a poor prognosis due to aggressive recurrence profiles. Temozolomide (TMZ) is an auxiliary alkylating agent that is extensively used in conjunction with surgical resection and forms the mainstay of clinical treatment strategies for gliomas. However, the frequent occurrence of TMZ resistance in clinical practice limits its therapeutic efficacy. Accumulating evidence has demonstrated that long non‑coding RNAs (lncRNAs) can play key and varied roles in glioma progression. lncRNAs have been reported to inhibit glioma progression by targeting various signaling pathways. In addition, the differential expression of lncRNAs has also been found to mediate the resistance of glioma to several chemotherapeutic agents, particularly to TMZ. The present review article therefore summarizes the findings of previous studies in an aim to report the significance and function of lncRNAs in regulating the chemoresistance of gliomas. The present review may provide further insight into the clinical treatment of gliomas.
Collapse
Affiliation(s)
- Sui Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Correspondence to: Dr Fu Peng or Professor Junrong Du, Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Renmin South Road, Chengdu, Sichuan 610041, P.R. China, E-mail: , E-mail:
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Correspondence to: Dr Fu Peng or Professor Junrong Du, Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Renmin South Road, Chengdu, Sichuan 610041, P.R. China, E-mail: , E-mail:
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|