1
|
Yang CX, Ma SZ, Zhang Q, Guo SY, Hu XD, Liu YJ, Wen L, Zhou ZS. Network Pharmacology and Molecular Docking of Shiwei Qingwen Decoction Reveal TNF as a Potential Target for Alleviating Mild COVID-19 Symptoms. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221125089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective: Shiwei Qingwen decoction (SWQWD) is effective in preventing COVID-19. This study examined the active components of SWQWD and its potential targets for preventing COVID-19. The study used network pharmacology and molecular docking technology to verify the role of SWQWD targets through animal experiments and explored the mechanisms that enhance immunity to alleviate mild COVID-19 symptoms. Methods: First, SWQWD- and COVID-19-related targets were retrieved from TCMSP, GeneCards, and OMIM databases. Second, protein–protein interaction networks were established using the String database. The drug active ingredient target network was constructed in Cytoscape to identify the core target proteins. Third, Gene Ontology (GO) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to predict the SWQWD mechanism of action. Finally, the targets were validated by molecular docking in an acute lung injury (ALI) rat model. Results: The SWQWD compound target network contained 79 compounds and 277 targets, coinciding with the 73 targets of COVID-19. The most important gene in the core subnetwork was a tumor necrosis factor (TNF). The 3 most potent compounds, quercetin, kaempferol, and luteolin, can enter the active pockets of TNF and have potential therapeutic roles in COVID-19. Conclusion: Quercetin, kaempferol, and luteolin in SWQWD may enhance immunity by regulating multiple TNF signal pathways. After administering SWQWD, the content of tumor necrosis factor-α was significantly reduced in the bronchoalveolar lavage fluid (BALF) of ALI rats in comparison to the model group. We believe SWQWD is able to prevent and control COVID-19 through the target of TNF.
Collapse
Affiliation(s)
- Chen-xiong Yang
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei, China
| | - Shang-zhi Ma
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Qian Zhang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Shu-yun Guo
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Xiao-di Hu
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yan-ju Liu
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Li Wen
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Zhong-shi Zhou
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
2
|
Adnan M, Koli S, Mohammad T, Siddiqui AJ, Patel M, Alshammari N, Bardakci F, Elasbali AM, Hassan MI. Searching for Novel Anaplastic Lymphoma Kinase Inhibitors: Structure-Guided Screening of Natural Compounds for a Tyrosine Kinase Therapeutic Target in Cancers. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:461-470. [PMID: 35925819 DOI: 10.1089/omi.2022.0067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase molecular target with broad importance for drug discovery, especially in the field of cancer therapeutics. ALK belongs to the insulin receptor superfamily that is involved in various malignancies, including non-small cell lung cancer, anaplastic large cell lymphoma, and neuroblastoma. ALK has been shown to play a role in cancer progression and metastasis, making it one of the prime targets to develop novel anticancer therapeutics. In this context, natural compounds can be an important resource to unravel novel ALK inhibitors. In this study, we report a structure-based virtual screening of natural compounds from the ZINC database, with an eye to potential inhibitors of ALK. Molecular docking was performed on a natural compound library, and top hits holding good binding affinity, docking score, and specificity toward ALK were selected. The hits were further evaluated based on the PAINS (pan-assay interference compounds) filter, ADMET (absorption, distribution, metabolism, excretion, toxicity) properties, PASS (prediction of activity spectra for substances) analysis, and two-dimensional interaction of protein-ligand complexes. Importantly, two natural compounds (ZINC03845566 and ZINC03999625) were identified as potential candidates for ALK, having appreciable affinity and specificity toward the ALK binding pocket and depicting drug-like properties as predicted from ADMET analysis and their physicochemical parameters. An all-atom molecular dynamics simulation for 100 ns on ALK promised stable ALK-ligand complexes. Hence, we conclude that ZINC03845566 and ZINC03999625 can act as potential ALK inhibitors against cancers where ALK plays a role, for example, in lung cancer, among others. All in all, these findings inform future discovery and translational research for ALK inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha'il, Ha'il, Saudi Arabia
| | - Saadgee Koli
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Potential Efficacy of β-Amyrin Targeting Mycobacterial Universal Stress Protein by In Vitro and In Silico Approach. Molecules 2022; 27:molecules27144581. [PMID: 35889451 PMCID: PMC9320329 DOI: 10.3390/molecules27144581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 01/29/2023] Open
Abstract
The emergence of drug resistance and the limited number of approved antitubercular drugs prompted identification and development of new antitubercular compounds to cure Tuberculosis (TB). In this work, an attempt was made to identify potential natural compounds that target mycobacterial proteins. Three plant extracts (A. aspera, C. gigantea and C. procera) were investigated. The ethyl acetate fraction of the aerial part of A. aspera and the flower ash of C. gigantea were found to be effective against M. tuberculosis H37Rv. Furthermore, the GC-MS analysis of the plant fractions confirmed the presence of active compounds in the extracts. The Mycobacterium target proteins, i.e., available PDB dataset proteins and proteins classified in virulence, detoxification, and adaptation, were investigated. A total of ten target proteins were shortlisted for further study, identified as follows: BpoC, RipA, MazF4, RipD, TB15.3, VapC15, VapC20, VapC21, TB31.7, and MazF9. Molecular docking studies showed that β-amyrin interacted with most of these proteins and its highest binding affinity was observed with Mycobacterium Rv1636 (TB15.3) protein. The stability of the protein-ligand complex was assessed by molecular dynamic simulation, which confirmed that β-amyrin most firmly interacted with Rv1636 protein. Rv1636 is a universal stress protein, which regulates Mycobacterium growth in different stress conditions and, thus, targeting Rv1636 makes M. tuberculosis vulnerable to host-derived stress conditions.
Collapse
|
4
|
George G, Koyiparambath VP, Sukumaran S, Nair AS, Pappachan LK, Al-Sehemi AG, Kim H, Mathew B. Structural Modifications on Chalcone Framework for Developing New Class of Cholinesterase Inhibitors. Int J Mol Sci 2022; 23:ijms23063121. [PMID: 35328542 PMCID: PMC8953944 DOI: 10.3390/ijms23063121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022] Open
Abstract
Due to the multifaceted pharmacological activities of chalcones, these scaffolds have been considered one of the most privileged frameworks in the drug discovery process. Structurally, chalcones are α, β-unsaturated carbonyl functionalities with two aryl or heteroaryl units. Amongst the numerous pharmacological activities explored for chalcone derivatives, the development of novel chalcone analogs for the treatment of Alzheimer's disease (AD) is among the research topics of most interest. Chalcones possess numerous advantages, such as smaller molecular size, opportunities for further structural modification thereby altering the physicochemical properties, cost-effectiveness, and convenient synthetic methodology. The present review highlights the recent evidence of chalcones as a privileged structure in AD drug development processes. Different classes of chalcone-derived analogs are summarized for the easy understanding of the previously reported analogs as well as the importance of certain functionalities in exhibiting cholinesterase inhibition. In this way, this review will shed light on the medicinal chemistry fraternity for the design and development of novel promising chalcone candidates for the treatment of AD.
Collapse
Affiliation(s)
- Ginson George
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Sunitha Sukumaran
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Leena K. Pappachan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Hoon Kim
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Korea
- Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
- Correspondence: (H.K.); (B.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
- Correspondence: (H.K.); (B.M.)
| |
Collapse
|