1
|
Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R, Graham SL. Molecular Mechanisms of Glaucoma Pathogenesis with Implications to Caveolin Adaptor Protein and Caveolin-Shp2 Axis. Aging Dis 2024; 15:2051-2068. [PMID: 37962455 PMCID: PMC11346403 DOI: 10.14336/ad.2023.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a common retinal disorder characterized by progressive optic nerve damage, resulting in visual impairment and potential blindness. Elevated intraocular pressure (IOP) is a major risk factor, but some patients still experience disease progression despite IOP-lowering treatments. Genome-wide association studies have linked variations in the Caveolin1/2 (CAV-1/2) gene loci to glaucoma risk. Cav-1, a key protein in caveolae membrane invaginations, is involved in signaling pathways and its absence impairs retinal function. Recent research suggests that Cav-1 is implicated in modulating the BDNF/TrkB signaling pathway in retinal ganglion cells, which plays a critical role in retinal ganglion cell (RGC) health and protection against apoptosis. Understanding the interplay between these proteins could shed light on glaucoma pathogenesis and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
2
|
Wu C, Chen J, Zhang J, Hong H, Jiang J, Ji C, Li C, Xia M, Xu G, Cui Z. Extracellular vesicles loaded with ApoB-100 protein affect the occurrence of coronary heart disease in patients after injury of spinal cord. Int J Biol Macromol 2024; 277:134330. [PMID: 39089550 DOI: 10.1016/j.ijbiomac.2024.134330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Spinal cord injury (SCI) patients have an increased susceptibility to coronary heart disease (CHD) due to dysregulated lipid deposition. We conducted a comprehensive investigation to gain insights into the specific roles of Apolipoprotein B-100 (APOB-100) in the development of CHD in patients suffering from SCI. First, we established an SCI rat model through semitransection. APOB-100 expression in plasma exosomes obtained from patients were determined. Subsequently, we found APOB-100 affected macrophage polarization when treating co-cultured neurons/macrophages lacking Sortilin with extracellular vesicles derived from SCI rats, where APOB-100 co-immunoprecipitated with Sortilin. Moreover, APOB-100 upregulation reduced neuronal cell viability and triggered apoptosis by upregulating Sortilin, leading to a decline in the Basso, Beattie, and Bresnahan (BBB) scale, exacerbation of neuron injury, increased macrophage infiltration, and elevated blood lipid-related indicators in SCI rats, which could be reversed by silencing Sortilin. In conclusion, APOB-100 from post-SCI patients' extracellular vesicles upregulates Sortilin, thereby endangering those patients to CHD.
Collapse
Affiliation(s)
- Chunshuai Wu
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China
| | - Jiajia Chen
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Jinlong Zhang
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Hongxiang Hong
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Jiawei Jiang
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Chunyan Ji
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China
| | - Chaochen Li
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China
| | - Mingjie Xia
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China
| | - Guanhua Xu
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China.
| | - Zhiming Cui
- Department of Spine surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong 226000, China; Key Laboratory for Restoration Mechanism and Clinical Translation of Spinal Cord Injury, Nantong 226000, China; Research institute for Spine and spinal cord disease of Nantong University, Nantong 226000, China.
| |
Collapse
|
3
|
Staib-Lasarzik I, Gölz C, Bobkiewiecz W, Somnuke P, Sebastiani A, Thal SC, Schäfer MK. Sortilin is dispensable for secondary injury processes following traumatic brain injury in mice. Heliyon 2024; 10:e35198. [PMID: 39170542 PMCID: PMC11336488 DOI: 10.1016/j.heliyon.2024.e35198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Traumatic brain injury (TBI) is characterized by complex secondary injury processes involving the p75 neurotrophin receptor (p75NTR), which has been proposed as a possible therapeutic target. However, the pathogenic role of the p75NTR co-receptor sortilin in TBI has not been investigated. In this study, we examined whether sortilin contributes to acute and early processes of secondary injury using a murine controlled cortical impact (CCI) model of TBI. Initial expression analysis showed a down-regulation of sortilin mRNA levels 1 and 5 day post injury (dpi) and a reduced expression of sortilin protein 1 dpi. Next, a total of 40 SortilinΔExon14 loss-of-function mouse mutants (Sort1-/-) and wild-type (Sort1+/+) littermate mice were subjected to CCI and examined at 1 and 5 dpi. Neither sensorimotor deficits or brain lesion size nor CCI-induced cell death or calcium-dependent excitotoxicity as evaluated by TUNEL staining or Western blot analysis of alpha II spectrin breakdown products were different between Sort1-/- and Sort1+/+ mice. In addition, CCI induced the up-regulation of pro-inflammatory marker mRNA expression (Il6, Tnfa, Aif1, and Gfap) irrespectively of the genotype. Similarly, the mRNA expressions of neurotrophins (Bdnf, Ngf, Nt3), VPS10P domain receptors others than sortilin (Ngfr, Sorl1, Sorcs2), and the sortilin interactor progranulin were not affected by genotype. Our results suggest that sortilin is a modulatory rather than a critical factor in the acute and early brain tissue response after TBI.
Collapse
Affiliation(s)
- Irina Staib-Lasarzik
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Wieslawa Bobkiewiecz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Pawit Somnuke
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Anne Sebastiani
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Serge C. Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K.E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Wang Y, Liang J, Xu B, Yang J, Wu Z, Cheng L. TrkB/BDNF signaling pathway and its small molecular agonists in CNS injury. Life Sci 2024; 336:122282. [PMID: 38008209 DOI: 10.1016/j.lfs.2023.122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
As one of the most prevalent neurotrophic factors in the central nervous system (CNS), brain-derived neurotrophic factor (BDNF) plays a significant role in CNS injury by binding to its specific receptor Tropomyosin-related kinase receptor B (TrkB). The BDNF/TrkB signaling pathway is crucial for neuronal survival, structural changes, and plasticity. BDNF acts as an axonal growth and extension factor, a pro-survival factor, and a synaptic modulator in the CNS. BDNF also plays an important role in the maintenance and plasticity of neuronal circuits. Several studies have demonstrated the importance of BDNF in the treatment and recovery of neurodegenerative and neurotraumatic disorders. By undertaking in-depth study on the mechanism of BDNF/TrkB function, important novel therapeutic strategies for treating neuropsychiatric disorders have been discovered. In this review, we discuss the expression patterns and mechanisms of the TrkB/BDNF signaling pathway in CNS damage and introduce several intriguing small molecule TrkB receptor agonists produced over the previous several decades.
Collapse
Affiliation(s)
- Yujin Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jing Liang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; School of Stomatology, Tongji University, Shanghai 200072, China
| | - Boyu Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Jin Yang
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Medical School, Tongji University, Shanghai 200433, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China.
| |
Collapse
|
5
|
Menevse AN, Ammer LM, Vollmann-Zwerenz A, Kupczyk M, Lorenz J, Weidner L, Hussein A, Sax J, Mühlbauer J, Heuschneider N, Rohrmus C, Mai LS, Jachnik B, Stamova S, Volpin V, Durst FC, Sorrentino A, Xydia M, Milenkovic VM, Bader S, Braun FK, Wetzel C, Albert NL, Tonn JC, Bartenstein P, Proescholdt M, Schmidt NO, Linker RA, Riemenschneider MJ, Beckhove P, Hau P. TSPO acts as an immune resistance gene involved in the T cell mediated immune control of glioblastoma. Acta Neuropathol Commun 2023; 11:75. [PMID: 37158962 PMCID: PMC10165826 DOI: 10.1186/s40478-023-01550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/14/2023] [Indexed: 05/10/2023] Open
Abstract
Glioblastoma (GB) IDH-wildtype is the most malignant primary brain tumor. It is particularly resistant to current immunotherapies. Translocator protein 18 kDa (TSPO) is upregulated in GB and correlates with malignancy and poor prognosis, but also with increased immune infiltration. Here, we studied the role of TSPO in the regulation of immune resistance of human GB cells. The role of TSPO in tumor immune resistance was experimentally determined in primary brain tumor initiating cells (BTICs) and cell lines through genetic manipulation of TSPO expression and subsequent cocultures with antigen specific cytotoxic T cells and autologous tumor-infiltrating T cells. Death inducing intrinsic and extrinsic apoptotic pathways affected by TSPO were investigated. TSPO-regulated genes mediating apoptosis resistance in BTICs were identified through gene expression analysis and subsequent functional analyses. TSPO transcription in primary GB cells correlated with CD8+ T cell infiltration, cytotoxic activity of T cell infiltrate, expression of TNFR and IFNGR and with the activity of their downstream signalling pathways, as well as with the expression of TRAIL receptors. Coculture of BTICs with tumor reactive cytotoxic T cells or with T cell-derived factors induced TSPO up-regulation through T cell derived TNFα and IFNγ. Silencing of TSPO sensitized BTICs against T cell-mediated cytotoxicity. TSPO selectively protected BTICs against TRAIL-induced apoptosis by regulating apoptosis pathways. TSPO also regulated the expression of multiple genes associated with resistance against apoptosis. We conclude that TSPO expression in GB is induced through T cell-derived cytokines TNFα and IFNγ and that TSPO expression protects GB cells against cytotoxic T cell attack through TRAIL. Our data thereby provide an indication that therapeutic targeting of TSPO may be a suitable approach to sensitize GB to immune cell-mediated cytotoxicity by circumventing tumor intrinsic TRAIL resistance.
Collapse
Affiliation(s)
- Ayse N Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Marcell Kupczyk
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Julia Lorenz
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Lorraine Weidner
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Abir Hussein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Julian Sax
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Jasmin Mühlbauer
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Nicole Heuschneider
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Celine Rohrmus
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Laura S Mai
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Birgit Jachnik
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Slava Stamova
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Valentina Volpin
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Franziska C Durst
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Antonio Sorrentino
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Maria Xydia
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, 93053, Regensburg, Germany
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, 93053, Regensburg, Germany
| | - Frank K Braun
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christian Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, 93053, Regensburg, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 80336, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, 80336, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 80336, Munich, Germany
| | - Martin Proescholdt
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Nils O Schmidt
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | | | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany.
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- LIT - Leibniz Institute for Immunotherapy (former RCI), c/o Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany.
- Department of Neurology -NeuroOncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
6
|
Milyutina YP, Arutjunyan AV, Korenevsky AV, Selkov SA, Kogan IY. Neurotrophins: are they involved in immune tolerance in pregnancy? Am J Reprod Immunol 2023; 89:e13694. [PMID: 36792972 DOI: 10.1111/aji.13694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
In this review, an attempt was made to substantiate the possibility for neurotrophins to be involved in the development of immune tolerance based on data accumulated on neurotrophin content and receptor expression in the trophoblast and immune cells, in particular, in natural killer cells. Numerous research results are reviewed to show that the expression and localization of neurotrophins along with their high-affinity tyrosine kinase receptors and low-affinity p75NTR receptor in the mother-placenta-fetus system indicate the important role of neurotrophins as binding molecules in regulating the crosstalk between the nervous, endocrine, and immune systems in pregnancy. An imbalance between these systems can occur with tumor growth and pathological processes observed in pregnancy complications and fetal development anomalies.
Collapse
Affiliation(s)
- Yulia P Milyutina
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
| | - Alexander V Arutjunyan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Andrey V Korenevsky
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Sergey A Selkov
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Institute of Obstetrics, Gynecology and Reproductive Medicine, St. Petersburg, Russia
| |
Collapse
|
7
|
Muscat SM, Deems NP, Butler MJ, Scaria EA, Bettes MN, Cleary SP, Bockbrader RH, Maier SF, Barrientos RM. Selective TLR4 Antagonism Prevents and Reverses Morphine-Induced Persistent Postoperative Cognitive Dysfunction, Dysregulation of Synaptic Elements, and Impaired BDNF Signaling in Aged Male Rats. J Neurosci 2023; 43:155-172. [PMID: 36384680 PMCID: PMC9838714 DOI: 10.1523/jneurosci.1151-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2023] [Indexed: 11/18/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are characterized by confusion, difficulty with executive function, and episodic memory impairment in the hours to months following a surgical procedure. Postoperative cognitive dysfunction (POCD) represents such impairments that last beyond 30 d postsurgery and is associated with increased risk of comorbidities, progression to dementia, and higher mortality. While it is clear that neuroinflammation plays a key role in PND development, what factors underlie shorter self-resolving versus persistent PNDs remains unclear. We have previously shown that postoperative morphine treatment extends POCD from 4 d (without morphine) to at least 8 weeks (with morphine) in aged male rats, and that this effect is likely dependent on the proinflammatory capabilities of morphine via activation of toll-like receptor 4 (TLR4). Here, we extend these findings to show that TLR4 blockade, using the selective TLR4 antagonist lipopolysaccharide from the bacterium Rhodobacter sphaeroides (LPS-RS Ultrapure), ameliorates morphine-induced POCD in aged male rats. Using either a single central preoperative treatment or a 1 week postoperative central treatment regimen, we demonstrate that TLR4 antagonism (1) prevents and reverses the long-term memory impairment associated with surgery and morphine treatment, (2) ameliorates morphine-induced dysregulation of the postsynaptic proteins postsynaptic density 95 and synaptopodin, (3) mitigates reductions in mature BDNF, and (4) prevents decreased activation of the BDNF receptor TrkB (tropomyosin-related kinase B), all at 4 weeks postsurgery. We also reveal that LPS-RS Ultrapure likely exerts its beneficial effects by preventing endogenous danger signal HMGB1 (high-mobility group box 1) from activating TLR4, rather than by blocking continuous activation by morphine or its metabolites. These findings suggest TLR4 as a promising therapeutic target to prevent or treat PNDs.SIGNIFICANCE STATEMENT With humans living longer than ever, it is crucial that we identify mechanisms that contribute to aging-related vulnerability to cognitive impairment. Here, we show that the innate immune receptor toll-like receptor 4 (TLR4) is a key mediator of cognitive dysfunction in aged rodents following surgery and postoperative morphine treatment. Inhibition of TLR4 both prevented and reversed surgery plus morphine-associated memory impairment, dysregulation of synaptic elements, and reduced BDNF signaling. Together, these findings implicate TLR4 in the development of postoperative cognitive dysfunction, providing mechanistic insight and novel therapeutic targets for the treatment of cognitive impairments following immune challenges such as surgery in older individuals.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Emmanuel A Scaria
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Sean P Cleary
- Campus Chemical Instrumentation Center, The Ohio State University, Columbus, Ohio 43210
| | - Ross H Bockbrader
- Pharmaceutical Sciences Graduate Program, Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
8
|
Li Q, Hu YZ, Gao S, Wang PF, Hu ZL, Dai RP. ProBDNF and its receptors in immune-mediated inflammatory diseases: novel insights into the regulation of metabolism and mitochondria. Front Immunol 2023; 14:1155333. [PMID: 37143663 PMCID: PMC10151479 DOI: 10.3389/fimmu.2023.1155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) consist of a common and clinically diverse group of diseases. Despite remarkable progress in the past two decades, no remission is observed in a large number of patients, and no effective treatments have been developed to prevent organ and tissue damage. Brain-derived neurotrophic factor precursor (proBDNF) and receptors, such as p75 neurotrophin receptor (p75NTR) and sortilin, have been proposed to mediate intracellular metabolism and mitochondrial function to regulate the progression of several IMIDs. Here, the regulatory role of proBDNF and its receptors in seven typical IMIDs, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, allergic asthma, type I diabetes, vasculitis, and inflammatory bowel diseases, was investigated.
Collapse
Affiliation(s)
- Qiao Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
| | - Yue-Zi Hu
- Clinical Laboratory, The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shan Gao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
| | - Peng-Fei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
- *Correspondence: Ru-Ping Dai, ; Zhao-Lan Hu,
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Anesthesia Medical Research Center, Central South University, Changsha, Hunan, China
- *Correspondence: Ru-Ping Dai, ; Zhao-Lan Hu,
| |
Collapse
|
9
|
Moderate Aerobic Exercise Regulates Follicular Dysfunction by Initiating Brain-Derived Neurotrophic Factor (BDNF)-Mediated Anti-Apoptotic Signaling Pathways in Polycystic Ovary Syndrome. J Clin Med 2022; 11:jcm11195584. [PMID: 36233452 PMCID: PMC9571561 DOI: 10.3390/jcm11195584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder among women. Moderate aerobic exercise intervention is considered an initial treatment strategy for managing PCOS. Brain-derived neurotrophic factor (BDNF) is an important molecular mediator and a beneficial response to exercise. We aimed to investigate the expression pattern and underlying molecular mechanisms of this neurotrophic factor during follicle development in ovarian tissues. The PCOS model was established by subcutaneous injection of 60 mg/kg dehydroepiandrosterone (DHEA) into the neck of Sprague Dawley rats for 35 consecutive days. PCOS rats then received aerobic exercise for 8 weeks. Body/ovarian weight and peripheral serum hormone levels were observed. Immunohistochemistry combined with Western blot analysis and fluorescence quantitative polymerase chain reaction were used to detect the changes in BDNF-TrkB/p75NTR pathway, apoptosis, and inflammatory factors. We show that moderate aerobic exercise not only reverses the PCOS phenotype but also activates the BDNF-TrkB pathway and initiates downstream targets. p-TrkB upregulates and phosphorylates phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) to inhibit apoptosis. In addition, aerobic exercise therapy reduces the high expression of p75NTR in the ovarian tissue of PCOS rats and initiates the anti-apoptotic effect from the downstream pathway of NF-κB/JNK. Our in vitro results state that treatment with BDNF ameliorated dihydrotestosterone (DHT)-induced granulosa cells (GCs) apoptosis by provoking p-TrkB activation and upregulating the PI3K/AKT pathway. The present study suggests that moderate aerobic exercise regulates follicular dysfunction in PCOS-like rats. One possible mechanism is to initiate the BDNF-mediated anti-apoptotic signaling pathway.
Collapse
|
10
|
mTOR and HDAC2 are simultaneously activated during electrically induced kindling of seizures. Epilepsy Res 2022; 185:106991. [DOI: 10.1016/j.eplepsyres.2022.106991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022]
|
11
|
Li H, Yu L, Ye D, Chang L, Zhao F, Wang H, Zhang T. Rehabilitation Training Combined with Jiaji Electroacupuncture Can Promote the Recovery of Muscle Group Function and Improve the Quality of Life in Patients with Upper Limb Peripheral Nerve Injury. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3621568. [PMID: 34966521 PMCID: PMC8712162 DOI: 10.1155/2021/3621568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022]
Abstract
This study was designed to probe into the improvement of rehabilitation training combined with Jiaji electroacupuncture intervention on patients with upper limb peripheral nerve injury. A total of 114 patients with peripheral nerve injury of upper limbs in our hospital from August 2017 to November 2019 were collected as the research participants. Among them, 59 in the control group (CG) received rehabilitation training alone, while 65 in the observation group (OG) received rehabilitation training combined with Jiaji electroacupuncture intervention. The therapeutic efficacy, Barthel index, and Fugl-Meyer assessment score, motor nerve conduction velocity, sensory nerve conduction velocity and amplitude, and quality of life (score SF-36) were compared between the two groups before and after treatment. The total effective rate of the OG was markedly higher than that of the CG. After treatment, the Barthel index, Fugl-Meyer assessment score, motor nerve conduction velocity, and sensory nerve conduction velocity and amplitude of the OG were obviously higher than those of the CG, and the SF-36 scores of the OG were higher than those of the CG in 8 dimensions. Rehabilitation training combined with Jiaji electroacupuncture intervention can dramatically promote the recovery of muscle group function and improve the quality of life of patients with upper limb peripheral nerve injury.
Collapse
Affiliation(s)
- Hui Li
- Department of Rehabilitation, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| | - Li Yu
- Department of Rehabilitation, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| | - Dayong Ye
- Department of Rehabilitation, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| | - Li Chang
- Department of Rehabilitation, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| | - Fengzhu Zhao
- Department of Rehabilitation, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| | - Hong Wang
- Department of Rehabilitation, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| | - Tiance Zhang
- Department of Rehabilitation, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar 161000, Heilongjiang, China
| |
Collapse
|
12
|
Ma W, Yang JW, Wang XB, Luo T, Zhou L, Lagares A, Li H, Liang Z, Liu KP, Zang CH, Li CY, Wu Z, Guo JH, Zhou XF, Li LY. Negative regulation by proBDNF signaling of peripheral neurogenesis in the sensory ganglia of adult rats. Biomed Pharmacother 2021; 144:112273. [PMID: 34700232 DOI: 10.1016/j.biopha.2021.112273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Neurogenesis in the adult brain is well recognized and plays a critical role in the maintenance of brain function and homeostasis. However, whether neurogenesis also occurs in the adult peripheral nervous system remains unknown. Here, using sensory ganglia (dorsal root ganglia, DRGs) as a model, we show that neurogenesis also occurs in the peripheral nervous system, but in a manner different from that in the central nervous system. Satellite glial cells (SGCs) express the neuronal precursor markers Nestin, POU domain, class 4, transcription factor 1, and p75 pan-neurotrophin receptor. Following sciatic nerve injury, the suppression of endogenous proBDNF by proBDNF antibodies resulted in the transformation of proliferating SGCs into doublecortin-positive cells in the DRGs. Using purified SGCs migrating out from the DRGs, the inhibition of endogenous proBDNF promoted the conversion of SGCs into neuronal phenotypes in vitro. Our findings suggest that SGCs are neuronal precursors, and that proBDNF maintains the SGC phenotype. Furthermore, the suppression of proBDNF signaling is necessary for neuronal phenotype acquisition by SGCs. Thus, we propose that peripheral neurogenesis may occur via the direct conversion of SGCs into neurons, and that this process is negatively regulated by proBDNF.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China; Department of Rehabilitation Medicine, Guizhou Medical University, Guiyang 550000, Guizhou, China
| | - Tao Luo
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China; Medical college of Panzhihua University, Panzhihua 617000, Sichuan, China
| | - Lei Zhou
- The Key Laboratory of Stem Cell and Regenerative Medicine of Yunnan Province, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Alfonso Lagares
- Department of Neurosurgery, Hospital 12 de Octubre, Instituto de Investigación imas12, Universidad Complutense de Madrid, Madrid, Spain
| | - Hongyun Li
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, NSW 2050, Australia
| | - Zhang Liang
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Cheng-Hao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming 650032, Yunnan, China.
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute, Faculty of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming 650500, Yunnan, China.
| |
Collapse
|
13
|
Ma W, Li CY, Zhang SJ, Zang CH, Yang JW, Wu Z, Wang GD, Liu J, Liu W, Liu KP, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. Neuroprotective effects of long noncoding RNAs involved in ischemic postconditioning after ischemic stroke. Neural Regen Res 2021; 17:1299-1309. [PMID: 34782575 PMCID: PMC8643058 DOI: 10.4103/1673-5374.327346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
During acute reperfusion, the expression profiles of long noncoding RNAs in adult rats with focal cerebral ischemia undergo broad changes. However, whether long noncoding RNAs are involved in neuroprotective effects following focal ischemic stroke in rats remains unclear. In this study, RNA isolation and library preparation was performed for long noncoding RNA sequencing, followed by determining the coding potential of identified long noncoding RNAs and target gene prediction. Differential expression analysis, long noncoding RNA functional enrichment analysis, and co-expression network analysis were performed comparing ischemic rats with and without ischemic postconditioning rats. Rats were subjected to ischemic postconditioning via the brief and repeated occlusion of the middle cerebral artery or femoral artery. Quantitative real-time reverse transcription-polymerase chain reaction was used to detect the expression levels of differentially expressed long noncoding RNAs after ischemic postconditioning in a rat model of ischemic stroke. The results showed that ischemic postconditioning greatly affected the expression profile of long noncoding RNAs and mRNAs in the brains of rats that underwent ischemic stroke. The predicted target genes of some of the identified long noncoding RNAs (cis targets) were related to the cellular response to ischemia and stress, cytokine signal transduction, inflammation, and apoptosis signal transduction pathways. In addition, 15 significantly differentially expressed long noncoding RNAs were identified in the brains of rats subjected to ischemic postconditioning. Nine candidate long noncoding RNAs that may be related to ischemic postconditioning were identified by a long noncoding RNA expression profile and long noncoding RNA-mRNA co-expression network analysis. Expression levels were verified by quantitative real-time reverse transcription-polymerase chain reaction. These results suggested that the identified long noncoding RNAs may be involved in the neuroprotective effects associated with ischemic postconditioning following ischemic stroke. The experimental animal procedures were approved by the Animal Experiment Ethics Committee of Kunming Medical University (approval No. KMMU2018018) in January 2018.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Si-Jia Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Cheng-Hao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Guo-Dong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
14
|
proBDNF expression induces apoptosis and inhibits synaptic regeneration by regulating the RhoA-JNK pathway in an in vitro post-stroke depression model. Transl Psychiatry 2021; 11:578. [PMID: 34759285 PMCID: PMC8580986 DOI: 10.1038/s41398-021-01667-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in the pathophysiology of post-stroke depression (PSD). However, the precise function and potential mechanism of proBDNF, the precursor form of BDNF, are unknown. In our study, a PSD-like model was established by treating neuronal cells with oxygen-glucose deprivation and corticosterone. We found that the protein proBDNF levels were significantly higher in the cortex and hippocampus in the PSD group than in the control group, suggesting that proBDNF plays a role in the pathophysiology of PSD. Furthermore, we re-established the PSD-like cell model using recombinant p75 neurotrophin receptor (p75NTR) or silencing c-Jun N-terminal kinase (JNK), and found that the PSD-induced upregulation of proBDNF was inhibited by recombinant p75NTR and JNK silencing (siJNK), and increased cellular apoptosis. Moreover, the application of recombinant p75NTR and siJNK in the PSD-like cell model significantly reversed the expression of apoptosis-related and depression-related proteins and decreased cellular apoptosis. Our findings suggest that proBDNF is involved in neural plasticity in PSD in vitro. The RhoA-JNK signaling pathway is activated after proBDNF binds to the p75NTR receptor, followed by the expression of apoptosis-related proteins (PSD95, synaptophysin, and P-cofilin), which contribute to PSD progression. The mechanism might involve the promotion of cellular apoptosis and the inhibition of nerve synapses regeneration by proBDNF.
Collapse
|
15
|
Luo RY, Luo C, Zhong F, Shen WY, Li H, Zhang YL, Dai RP. Early-Life Multiple Sevoflurane Exposures Alleviate Long-term Anxiety-Like Behaviors in Mice via the proBDNF/ERK Pathway. Mol Neurobiol 2021; 58:170-183. [PMID: 32910421 DOI: 10.1007/s12035-020-02113-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Early-life multiple anesthetics exposure causes neurotoxicity and hence cognitive dysfunction on developing brain. However, the effects of early-life multiple sevoflurane exposures on emotional changes, especially upon stress, are far beyond understood. In young male C57BL6/J mice, the present study showed that 3% sevoflurane inhalation for 2 h in three consecutive days did not influence anxiety-like behaviors as measured by open field test, light dark transition, and elevated plus maze test. In addition, foot shocks stress induced both the short- and long-term anxiety-like behaviors. However, triple sevoflurane exposures ameliorated the long-term anxiety-like behaviors induced by the foot shocks. In parallel, foot shocks stress upregulated the expression of phosphorylated extracellular signal-regulated kinase (p-ERK) and brain-derived neurotrophic factor precursor (proBDNF) in the anterior cingulate cortex (ACC), which were significantly inhibited by triple sevoflurane exposures. Immunofluorescence further indicated that the increased p-ERK was mainly expressed in the proBDNF-positive staining cells. Intra-ACC injection of recombinant proBDNF protein upregulated the p-ERK expression and blocked the anxiolytic effect of sevoflurane exposure on long-term anxiety-like behaviors. Therefore, our study demonstrated that multiple sevoflurane exposures alleviate long-term anxiety-like behaviors upon acute stress in young mice by inhibiting proBDNF-ERK signaling in the ACC.
Collapse
Affiliation(s)
- Ru-Yi Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, 410011, Hunan Province, China
- Anesthesia Medical Research Center, Central South University, Changsha, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, 410011, Hunan Province, China.
- Anesthesia Medical Research Center, Central South University, Changsha, China.
| | - Feng Zhong
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, 410011, Hunan Province, China
- Anesthesia Medical Research Center, Central South University, Changsha, China
| | - Wei-Yun Shen
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, 410011, Hunan Province, China
- Anesthesia Medical Research Center, Central South University, Changsha, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, 410011, Hunan Province, China
- Anesthesia Medical Research Center, Central South University, Changsha, China
| | - Yan-Ling Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, 410011, Hunan Province, China
- Anesthesia Medical Research Center, Central South University, Changsha, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road No. 139, Changsha, 410011, Hunan Province, China.
- Anesthesia Medical Research Center, Central South University, Changsha, China.
| |
Collapse
|
16
|
He Q, Liu H, Deng S, Chen X, Li D, Jiang X, Zeng W, Lu W. The Golgi Apparatus May Be a Potential Therapeutic Target for Apoptosis-Related Neurological Diseases. Front Cell Dev Biol 2020; 8:830. [PMID: 33015040 PMCID: PMC7493689 DOI: 10.3389/fcell.2020.00830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Increasing evidence shows that, in addition to the classical function of protein processing and transport, the Golgi apparatus (GA) is also involved in apoptosis, one of the most common forms of cell death. The structure and the function of the GA is damaged during apoptosis. However, the specific effect of the GA on the apoptosis process is unclear; it may be involved in initiating or promoting apoptosis, or it may inhibit apoptosis. Golgi-related apoptosis is associated with a variety of neurological diseases including glioma, Alzheimer’s disease (AD), Parkinson’s disease (PD), and ischemic stroke. This review summarizes the changes and the possible mechanisms of Golgi structure and function during apoptosis. In addition, we also explore the possible mechanisms by which the GA regulates apoptosis and summarize the potential relationship between the Golgi and certain neurological diseases from the perspective of apoptosis. Elucidation of the interaction between the GA and apoptosis broadens our understanding of the pathological mechanisms of neurological diseases and provides new research directions for the treatment of these diseases. Therefore, we propose that the GA may be a potential therapeutic target for apoptosis-related neurological diseases.
Collapse
Affiliation(s)
- Qiang He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Yousuf MS, Maguire AD, Simmen T, Kerr BJ. Endoplasmic reticulum-mitochondria interplay in chronic pain: The calcium connection. Mol Pain 2020; 16:1744806920946889. [PMID: 32787562 PMCID: PMC7427143 DOI: 10.1177/1744806920946889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is a debilitating condition that affects roughly a third to a half of the world's population. Despite its substantial effect on society, treatment for chronic pain is modest, at best, notwithstanding its side effects. Hence, novel therapeutics are direly needed. Emerging evidence suggests that calcium plays an integral role in mediating neuronal plasticity that underlies sensitization observed in chronic pain states. The endoplasmic reticulum and the mitochondria are the largest calcium repositories in a cell. Here, we review how stressors, like accumulation of misfolded proteins and oxidative stress, influence endoplasmic reticulum and mitochondria function and contribute to chronic pain. We further examine the shuttling of calcium across the mitochondrial-associated membrane as a mechanism of cross-talk between the endoplasmic reticulum and the mitochondria. In addition, we discuss how endoplasmic reticulum stress, mitochondrial impairment, and calcium dyshomeostasis are implicated in various models of neuropathic pain. We propose a novel framework of endoplasmic reticulum-mitochondria signaling in mediating pain hypersensitivity. These observations require further investigation in order to develop novel therapies for chronic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|