1
|
Mohamadpour B, Mirazi N, Komaki A, Basir HS, Hosseini A. Protective effects of selegiline against amyloid beta-induced anxiety-like behavior and memory impairment. Brain Behav 2024; 14:e3599. [PMID: 38873869 PMCID: PMC11176901 DOI: 10.1002/brb3.3599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex and common neurodegenerative disorder. The present study aimed to investigate the potential effects of selegiline (SEL) on various aspects of memory performance, anxiety, and oxidative stress in an AD rat model induced by intracerebroventricular injection of amyloid beta1-42 (Aβ1-42). METHODS Oral administration of SEL at a dose of 0.5 mg/kg/day was performed for 30 consecutive days. Following the 30 days, several tests, including the open-field, elevated plus-maze, novel object recognition, Morris water maze, and passive avoidance learning were conducted to assess locomotor activity, anxiety-like behavior, recognition memory, spatial memory, and passive avoidance memory, respectively. RESULTS The results indicate that the induction of AD in rats led to recognition memory, spatial memory, and passive avoidance memory impairments, as well as increased anxiety. Additionally, the AD rats exhibited a decrease in total antioxidant capacity and an increase in total oxidant status levels, suggesting an imbalance in oxidative-antioxidant status. However, the administration of SEL improved memory performance, reduced anxiety, and modulated oxidative-antioxidant status in AD rats. CONCLUSIONS These findings provide evidence that SEL may alleviate anxiety-like behavior and cognitive deficits induced by Aβ through modulation of oxidative-antioxidant status.
Collapse
Affiliation(s)
- Behnam Mohamadpour
- Department of Biology, Faculty of Basic ScienceBu‐Ali Sina UniversityHamedanIran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic ScienceBu‐Ali Sina UniversityHamedanIran
| | - Alireza Komaki
- Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran
| | - Hamid Shokati Basir
- Department of Biology, Faculty of Basic ScienceBu‐Ali Sina UniversityHamedanIran
| | - Abdolkarim Hosseini
- Faculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| |
Collapse
|
2
|
Metiefeng NT, Tamfu AN, Fotsing Tagatsing M, Tabopda TK, Kucukaydin S, Noah Mbane M, de Theodore Atchade A, Talla E, Henoumont C, Laurent S, Anouar EH, Dinica RM. In Vitro and In Silico Evaluation of Anticholinesterase and Antidiabetic Effects of Furanolabdanes and Other Constituents from Graptophyllum pictum (Linn.) Griffith. Molecules 2023; 28:4802. [PMID: 37375357 DOI: 10.3390/molecules28124802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Graptophyllum pictum is a tropical plant noticeable for its variegated leaves and exploited for various medicinal purposes. In this study, seven compounds, including three furanolabdane diterpenoids, i.e., Hypopurin E, Hypopurin A and Hypopurin B, as well as with Lupeol, β-sitosterol 3-O-β-d-glucopyranoside, stigmasterol 3-O-β-d-glucopyranoside and a mixture of β-sitosterol and stigmasterol, were isolated from G. pictum, and their structures were deduced from ESI-TOF-MS, HR-ESI-TOF-MS, 1D and 2D NMR experiments. The compounds were evaluated for their anticholinesterase activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BchE), as well as their antidiabetic potential through inhibition of α-glucosidase and α-amylase. For AChE inhibition, no sample had IC50 within tested concentrations, though the most potent was Hypopurin A, which had a percentage inhibition of 40.18 ± 0.75%, compared to 85.91 ± 0.58% for galantamine, at 100 µg/mL. BChE was more susceptible to the leaves extract (IC50 = 58.21 ± 0.65 µg/mL), stem extract (IC50 = 67.05 ± 0.82 µg/mL), Hypopurin A (IC50 = 58.00 ± 0.90 µg/mL), Hypopurin B (IC50 = 67.05 ± 0.92 µg/mL) and Hypopurin E (IC50 = 86.90 ± 0.76 µg/mL). In the antidiabetic assay, the furanolabdane diterpenoids, lupeol and the extracts had moderate to good activities. Against α-glucosidase, lupeol, Hypopurin E, Hypopurin A and Hypopurin B had appreciable activities but the leaves (IC50 = 48.90 ± 0.17 µg/mL) and stem (IC50 = 45.61 ± 0.56 µg/mL) extracts were more active than the pure compounds. In the α-amylase assay, stem extract (IC50 = 64.47 ± 0.78 µg/mL), Hypopurin A (IC50 = 60.68 ± 0.55 µg/mL) and Hypopurin B (IC50 = 69.51 ± 1.30 µg/mL) had moderate activities compared to the standard acarbose (IC50 = 32.25 ± 0.36 µg/mL). Molecular docking was performed to determine the binding modes and free binding energies of Hypopurin E, Hypopurin A and Hypopurin B in relation to the enzymes and decipher the structure-activity relationship. The results indicated that G. pictum and its compounds could, in general, be used in the development of therapies for Alzheimer's disease and diabetes.
Collapse
Affiliation(s)
- Nathalie Tanko Metiefeng
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde 812, Cameroon
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48800, Turkey
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, 'Dunarea de Jos' University of Galati, 47 Domneasca Str., 800008 Galati, Romania
| | - Maurice Fotsing Tagatsing
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde 812, Cameroon
| | - Turibio Kuiate Tabopda
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde 812, Cameroon
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sitki Kocman University, Mugla 48800, Turkey
| | - Martin Noah Mbane
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde 812, Cameroon
| | - Alex de Theodore Atchade
- Department of Organic Chemistry, Faculty of Science, The University of Yaounde I, Yaounde 812, Cameroon
| | - Emmanuel Talla
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Celine Henoumont
- Laboratory of NMR and Molecular Imaging, Department of General, Organic and Biomedical Chemistry, University of Mons, B-7000 Mons, Belgium
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, Department of General, Organic and Biomedical Chemistry, University of Mons, B-7000 Mons, Belgium
| | - El Hassane Anouar
- Department of Chemistry, College of Sciences and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rodica Mihaela Dinica
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, 'Dunarea de Jos' University of Galati, 47 Domneasca Str., 800008 Galati, Romania
| |
Collapse
|
3
|
Almalki FA. An overview of structure-based activity outcomes of pyran derivatives against Alzheimer's disease. Saudi Pharm J 2023; 31:998-1018. [PMID: 37234350 PMCID: PMC10205782 DOI: 10.1016/j.jsps.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023] Open
Abstract
Pyran is a heterocyclic group containing oxygen that possesses a variety of pharmacological effects. Pyran is also one of the most prevalent structural subunits in natural products, such as xanthones, coumarins, flavonoids, benzopyrans, etc. Additionally demonstrating the neuroprotective properties of pyrans is the fact that this heterocycle has recently attracted the attention of scientists worldwide. Alzheimer's Disease (AD) treatment and diagnosis are two of the most critical research objectives worldwide. Increased amounts of extracellular senile plaques, intracellular neurofibrillary tangles, and a progressive shutdown of cholinergic basal forebrain neuron transmission are often related with cognitive impairment. This review highlights the various pyran scaffolds of natural and synthetic origin that are effective in the treatment of AD. For better understanding synthetic compounds are categorized as different types of pyran derivatives like chromene, flavone, xanthone, xanthene, etc. The discussion encompasses both the structure-activity correlations of these compounds as well as their activity against AD. Because of the intriguing actions that were uncovered by these pyran-based scaffolds, there is no question that they are at the forefront of the search for potential medication candidates that could treat Alzheimer's disease.
Collapse
|
4
|
Alharbi KS, Javed Shaikh MA, Afzal O, Alfawaz Altamimi AS, Hassan almalki W, Kazmi I, Al-Abbasi FA, Alzarea SI, Babu MR, Singh SK, Chellappan DK, Dua K, Gupta G. Oligonucleotides: A novel area of interest for drug delivery in neurodegenerative diseases. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 240:114606. [PMID: 35858523 DOI: 10.1016/j.ejmech.2022.114606] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
6
|
Zeng F, Lu T, Wang J, Nie X, Xiong W, Yin Z, Peng D. Design, Synthesis and Bioactivity Evaluation of Coumarin-BMT Hybrids as New Acetylcholinesterase Inhibitors. Molecules 2022; 27:molecules27072142. [PMID: 35408542 PMCID: PMC9000719 DOI: 10.3390/molecules27072142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Coumarin possesses the aromatic group and showed plentiful activities, such as antioxidant, preventing asthma and antisepsis. In addition, coumarin derivatives usually possess good solubility, low cytotoxicity and excellent cell permeability. In our study, we synthesized the compound bridge methylene tacrine (BMT), which has the classical pharmacophore structure of Tacrine (THA). Based on the principle of active substructure splicing, BMT was used as a lead compound and synthesized coumarin-BMT hybrids by introducing coumarin to BMT. In this work, 21 novel hybrids of BMT and coumarin were synthesized and evaluated for their inhibitory activity on AChE. All obtained compounds present preferable inhibition. Compound 8b was the most active compound, with the value of Ki as 49.2 nM, which was higher than Galantamine (GAL) and lower than THA. The result of molecular docking showed that the highest binding free energy was -40.43 kcal/mol for compound 8b, which was an identical trend with the calculated Ki.
Collapse
Affiliation(s)
- Fanxin Zeng
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (F.Z.); (T.L.)
- Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Tao Lu
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (F.Z.); (T.L.)
| | - Jie Wang
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (J.W.); (X.N.); (W.X.)
| | - Xuliang Nie
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (J.W.); (X.N.); (W.X.)
| | - Wanming Xiong
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (J.W.); (X.N.); (W.X.)
| | - Zhongping Yin
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (F.Z.); (T.L.)
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (Z.Y.); (D.P.)
| | - Dayong Peng
- East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (F.Z.); (T.L.)
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China; (J.W.); (X.N.); (W.X.)
- Correspondence: (Z.Y.); (D.P.)
| |
Collapse
|
7
|
Qin C, Wang K, Zhang L, Bai L. Stem cell therapy for Alzheimer's disease: An overview of experimental models and reality. Animal Model Exp Med 2022; 5:15-26. [PMID: 35229995 PMCID: PMC8879630 DOI: 10.1002/ame2.12207] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. The pathology of AD is characterized by extracellular amyloid beta (Aβ) plaques, neurofibrillary tangles composed of hyperphosphorylated tau, neuronal death, synapse loss, and brain atrophy. Many therapies have been tested to improve or at least effectively modify the course of AD. Meaningful data indicate that the transplantation of stem cells can alleviate neuropathology and significantly ameliorate cognitive deficits in animal models with Alzheimer's disease. Transplanted stem cells have shown their inherent advantages in improving cognitive impairment and memory dysfunction, although certain weaknesses or limitations need to be overcome. This review recapitulates rodent models for AD, the therapeutic efficacy of stem cells, influencing factors, and the underlying mechanisms behind these changes. Stem cell therapy provides perspective and challenges for its clinical application in the future.
Collapse
Affiliation(s)
- Chuan Qin
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Comparative Medicine CenterPeking Union Medical College (PUMC)NHC Key Laboratory of Human Disease Comparative MedicineKey Laboratory of Human Diseases Animal ModelBeijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases BeijingBeijingChina
| | - Kewei Wang
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Comparative Medicine CenterPeking Union Medical College (PUMC)NHC Key Laboratory of Human Disease Comparative MedicineKey Laboratory of Human Diseases Animal ModelBeijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases BeijingBeijingChina
| | - Ling Zhang
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Comparative Medicine CenterPeking Union Medical College (PUMC)NHC Key Laboratory of Human Disease Comparative MedicineKey Laboratory of Human Diseases Animal ModelBeijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases BeijingBeijingChina
| | - Lin Bai
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Comparative Medicine CenterPeking Union Medical College (PUMC)NHC Key Laboratory of Human Disease Comparative MedicineKey Laboratory of Human Diseases Animal ModelBeijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases BeijingBeijingChina
| |
Collapse
|
8
|
Shah MKA, Azad AK, Nawaz A, Ullah S, Latif MS, Rahman H, Alsharif KF, Alzahrani KJ, El-Kott AF, Albrakati A, Abdel-Daim MM. Formulation Development, Characterization and Antifungal Evaluation of Chitosan NPs for Topical Delivery of Voriconazole In Vitro and Ex Vivo. Polymers (Basel) 2021; 14:polym14010135. [PMID: 35012154 PMCID: PMC8747354 DOI: 10.3390/polym14010135] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
This study aims to develop chitosan-based voriconazole nanoparticles (NPs) using spray-drying technique. The effect of surfactants and polymers on the physicochemical properties, in vitro release, and permeation of NPs was investigated. The prepared NPs containing various surfactants and polymers (e.g., Tween 20 (T20), Tween 80 (T80), sodium lauryl sulfate (SLS), propylene glycol (PG), and Polyethylene glycol-4000 (PEG-4000)) were physiochemically evaluated for size, zeta potential, drug content, percent entrapment efficiency, in vitro release, and permeation across rats' skin. A Franz diffusion cell was used for evaluating the in vitro release and permeation profile. The voriconazole-loaded NPs were investigated for antifungal activity against Candida albicans (C. albicans). The prepared NPs were in the nano range (i.e., 160-500 nm) and positively charged. Images taken by a scanning electron microscope showed that all prepared NPs were spherical and smooth. The drug content of NPs ranged from 75% to 90%. Nanoparticle formulations exhibited a good in vitro release profile and transport voriconazole across the rat's skin in a slow control release manner. The NPs containing SLS, T80, and PG exhibited the best penetration and skin retention profile. In addition, the formulation exhibited a potential antifungal effect against C. albicans. It was concluded that the development of chitosan NPs has a great potential for the topical delivery of voriconazole against fungal infection.
Collapse
Affiliation(s)
- Muhammad Khurshid Alam Shah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Abul Kalam Azad
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
- Correspondence: (A.K.A.); (M.M.A.-D.)
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Shafi Ullah
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Muhammad Shahid Latif
- Advanced Drug Delivery Lab, Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.K.A.S.); (A.N.); (S.U.); (M.S.L.)
| | - Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, Korea;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (K.J.A.)
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.F.A.); (K.J.A.)
| | - Attalla F. El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia;
- Zoology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (A.K.A.); (M.M.A.-D.)
| |
Collapse
|
9
|
Czapski GA, Strosznajder JB. Glutamate and GABA in Microglia-Neuron Cross-Talk in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222111677. [PMID: 34769106 PMCID: PMC8584169 DOI: 10.3390/ijms222111677] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
The physiological balance between excitation and inhibition in the brain is significantly affected in Alzheimer’s disease (AD). Several neuroactive compounds and their signaling pathways through various types of receptors are crucial in brain homeostasis, among them glutamate and γ-aminobutyric acid (GABA). Activation of microglial receptors regulates the immunological response of these cells, which in AD could be neuroprotective or neurotoxic. The novel research approaches revealed the complexity of microglial function, including the interplay with other cells during neuroinflammation and in the AD brain. The purpose of this review is to describe the role of several proteins and multiple receptors on microglia and neurons, and their involvement in a communication network between cells that could lead to different metabolic loops and cell death/survival. Our review is focused on the role of glutamatergic, GABAergic signaling in microglia–neuronal cross-talk in AD and neuroinflammation. Moreover, the significance of AD-related neurotoxic proteins in glutamate/GABA-mediated dialogue between microglia and neurons was analyzed in search of novel targets in neuroprotection, and advanced pharmacological approaches.
Collapse
|
10
|
Novel Balance Mechanism Participates in Stem Cell Therapy to Alleviate Neuropathology and Cognitive Impairment in Animal Models with Alzheimer's Disease. Cells 2021; 10:cells10102757. [PMID: 34685737 PMCID: PMC8534506 DOI: 10.3390/cells10102757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy improves memory loss and cognitive deficits in animal models with Alzheimer's disease. The underlying mechanism remains to be determined, but it may involve the interaction of stem cells with hippocampal cells. The transplantation of stem cells alters the pathological state and establishes a novel balance based on multiple signaling pathways. The new balance mechanism is regulated by various autocrine and paracrine cytokines, including signal molecules that target (a) cell growth and death. Stem cell treatment stimulates neurogenesis and inhibits apoptosis, which is regulated by the crosstalk between apoptosis and autophagy-(b) Aβ and tau pathology. Aberrant Aβ plaques and neurofibrillary tau tangles are mitigated subsequent to stem cell intervention-(c) inflammation. Neuroinflammation in the lesion is relieved, which may be related to the microglial M1/M2 polarization-(d) immunoregulation. The transplanted stem cells modulate immune cells and shape the pathophysiological roles of immune-related genes such as TREM2, CR1, and CD33-(e) synaptogenesis. The functional reconstruction of synaptic connections can be promoted by stem cell therapy through multi-level signaling, such as autophagy, microglial activity, and remyelination. The regulation of new balance mechanism provides perspective and challenge for the treatment of Alzheimer's disease.
Collapse
|
11
|
Exposure to Environmental Arsenic and Emerging Risk of Alzheimer's Disease: Perspective Mechanisms, Management Strategy, and Future Directions. TOXICS 2021; 9:toxics9080188. [PMID: 34437506 PMCID: PMC8402411 DOI: 10.3390/toxics9080188] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is one of the most prevailing neurodegenerative diseases, characterized by memory dysfunction and the presence of hyperphosphorylated tau and amyloid β (Aβ) aggregates in multiple brain regions, including the hippocampus and cortex. The exact etiology of AD has not yet been confirmed. However, epidemiological reports suggest that populations who were exposed to environmental hazards are more likely to develop AD than those who were not. Arsenic (As) is a naturally occurring environmental risk factor abundant in the Earth’s crust, and human exposure to As predominantly occurs through drinking water. Convincing evidence suggests that As causes neurotoxicity and impairs memory and cognition, although the hypothesis and molecular mechanism of As-associated pathobiology in AD are not yet clear. However, exposure to As and its metabolites leads to various pathogenic events such as oxidative stress, inflammation, mitochondrial dysfunctions, ER stress, apoptosis, impaired protein homeostasis, and abnormal calcium signaling. Evidence has indicated that As exposure induces alterations that coincide with most of the biochemical, pathological, and clinical developments of AD. Here, we overview existing literature to gain insights into the plausible mechanisms that underlie As-induced neurotoxicity and the subsequent neurological deficits in AD. Prospective strategies for the prevention and management of arsenic exposure and neurotoxicity have also been discussed.
Collapse
|
12
|
Chen J, Dong G, Song L, Zhao X, Cao J, Luo X, Feng J, Zhao XM. Integration of Multimodal Data for Deciphering Brain Disorders. Annu Rev Biomed Data Sci 2021; 4:43-56. [PMID: 34465176 DOI: 10.1146/annurev-biodatasci-092820-020354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The accumulation of vast amounts of multimodal data for the human brain, in both normal and disease conditions, has provided unprecedented opportunities for understanding why and how brain disorders arise. Compared with traditional analyses of single datasets, the integration of multimodal datasets covering different types of data (i.e., genomics, transcriptomics, imaging, etc.) has shed light on the mechanisms underlying brain disorders in greater detail across both the microscopic and macroscopic levels. In this review, we first briefly introduce the popular large datasets for the brain. Then, we discuss in detail how integration of multimodal human brain datasets can reveal the genetic predispositions and the abnormal molecular pathways of brain disorders. Finally, we present an outlook on how future data integration efforts may advance the diagnosis and treatment of brain disorders.
Collapse
Affiliation(s)
- Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; , .,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Ministry of Education, Shanghai 200433, China.,Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
| | - Guiying Dong
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; ,
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; ,
| | - Xingzhong Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; ,
| | - Jixin Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; ,
| | - Xiaohui Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; ,
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; , .,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Ministry of Education, Shanghai 200433, China.,Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; , .,MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Ministry of Education, Shanghai 200433, China.,Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Zafar R, Naureen H, Zubair M, Shahid K, Saeed Jan M, Akhtar S, Ahmad H, Waseem W, Haider A, Ali S, Tariq M, Sadiq A. Prospective Application of Two New Pyridine-Based Zinc (II) Amide Carboxylate in Management of Alzheimer's Disease: Synthesis, Characterization, Computational and in vitro Approaches. Drug Des Devel Ther 2021; 15:2679-2694. [PMID: 34188447 PMCID: PMC8232895 DOI: 10.2147/dddt.s311619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative illness described predominantly by dementia. Even though Alzheimer’s disease has been known for over a century, its origin remains a mystery, and researchers are exploring many therapy options, including the cholinesterase technique. A decreased acetylcholine ACh neurotransmitter level is believed to be among the important factors in the progression of Alzheimer’s disease. Methods In continuation of synthesizing potential anti-Alzheimer agents and known appreciative pharmacological potential of amide-containing compounds, this study presents the synthesis of two novel amide-based transition metal zinc (II) complexes, AAZ7 and AAZ8, attached with a heterocyclic pyridine ring, which was synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis, 1H_NMR, and 13C_NMR. FT-IR spectroscopic records showed the development of bidentate ligand as Δν value was decreased in both complexes when compared with the free ligand. Both of the synthesized complexes were analyzed for acetylcholinesterase and butyrylcholinesterase inhibitory potential along with the antioxidizing activity. Results Importantly, the complex of AAZ8 exhibited more potent activity giving IC50 values of 14 µg/mL and 18µg/mL as AChE and BChE cholinesterase inhibitors, respectively, when compared with standard positive control galantamine. Interestingly, AAZ8 also displayed promising antioxidant potential by showing IC50 values of 35 µg/mL for DPPH and 29 µg/mL for ABTS in comparison with positive control ascorbic acid. Conclusion Herein, we report two new amide carboxylate zinc (II) complexes which were potentially analyzed for various biological applications like acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory potentials, and antioxidant assays. Computational docking studies also simulated results to understand the interactions. Additionally, thermodynamic parameters utilizing molecular dynamic simulation were performed to determine the ligand protein stability and flexibility that supported the results. Studies have shown that these compounds have the potential to be good anti-Alzheimer candidates for future studies due to inhibition of cholinesterase enzymes and display of free radical scavenging potential against DPPH as well as ABTS free radicals.
Collapse
Affiliation(s)
- Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan.,Yusra Institute of Pharmaceutical Sciences, Islamabad, 44000, Pakistan
| | - Humaira Naureen
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khadija Shahid
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | | | - Samar Akhtar
- Yusra Institute of Pharmaceutical Sciences, Islamabad, 44000, Pakistan
| | - Hammad Ahmad
- Yusra Institute of Pharmaceutical Sciences, Islamabad, 44000, Pakistan
| | - Wajeeha Waseem
- Department of Basic Medical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Tariq
- Department of PCB, Rokhan University, Jalalabad, Nangrahar, Afghanistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, KP, Pakistan
| |
Collapse
|
14
|
Rahman MA, Dash R, Sohag AAM, Alam M, Rhim H, Ha H, Moon IS, Uddin MJ, Hannan MA. Prospects of Marine Sterols against Pathobiology of Alzheimer's Disease: Pharmacological Insights and Technological Advances. Mar Drugs 2021; 19:md19030167. [PMID: 33804766 PMCID: PMC8003995 DOI: 10.3390/md19030167] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder characterized by a progressive decline in memory and cognition, mostly affecting the elderly. Numerous functional bioactives have been reported in marine organisms, and anti-Alzheimer's agents derived from marine resources have gained attention as a promising approach to treat AD pathogenesis. Marine sterols have been investigated for several health benefits, including anti-cancer, anti-obesity, anti-diabetes, anti-aging, and anti-Alzheimer's activities, owing to their anti-inflammatory and antioxidant properties. Marine sterols interact with various proteins and enzymes participating via diverse cellular systems such as apoptosis, the antioxidant defense system, immune response, and cholesterol homeostasis. Here, we briefly overview the potential of marine sterols against the pathology of AD and provide an insight into their pharmacological mechanisms. We also highlight technological advances that may lead to the potential application of marine sterols in the prevention and therapy of AD.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (I.S.M.)
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Mahboob Alam
- Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 780-714, Korea;
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (R.D.); (I.S.M.)
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: (M.J.U.); (M.A.H.)
| | - Md. Abdul Hannan
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh;
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- Correspondence: (M.J.U.); (M.A.H.)
| |
Collapse
|
15
|
Modulatory Effects of Autophagy on APP Processing as a Potential Treatment Target for Alzheimer's Disease. Biomedicines 2020; 9:biomedicines9010005. [PMID: 33374126 PMCID: PMC7824196 DOI: 10.3390/biomedicines9010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the formation of intracellular aggregate composed of heavily phosphorylated tau protein and extracellular deposit of amyloid-β (Aβ) plaques derived from proteolysis cleavage of amyloid precursor protein (APP). Autophagy refers to the lysosomal-mediated degradation of cytoplasmic constituents, which plays a critical role in maintaining cellular homeostasis. Importantly, recent studies reported that dysregulation of autophagy is associated in the pathogenesis of AD, and therefore, autophagy modulation has gained attention as a promising approach to treat AD pathogenesis. In AD, both the maturation of autolysosomes and its retrograde transports have been obstructed, which causes the accumulation of autophagic vacuoles and eventually leads to degenerating and dystrophic neurites function. However, the mechanism of autophagy modulation in APP processing and its pathogenesis have not yet been fully elucidated in AD. In the early stage of AD, APP processing and Aβ accumulation-mediated autophagy facilitate the removal of toxic protein aggregates via mTOR-dependent and -independent pathways. In addition, a number of autophagy-related genes (Atg) and APP are thought to influence the development of AD, providing a bidirectional link between autophagy and AD pathology. In this review, we summarized the current observations related to autophagy regulation and APP processing in AD, focusing on their modulation associated with the AD progression. Moreover, we emphasizes the application of small molecules and natural compounds to modulate autophagy for the removal and clearance of APP and Aβ deposits in the pathological condition of AD.
Collapse
|
16
|
Inhibition of Butyrylcholinesterase and Human Monoamine Oxidase-B by the Coumarin Glycyrol and Liquiritigenin Isolated from Glycyrrhiza uralensis. Molecules 2020; 25:molecules25173896. [PMID: 32859055 PMCID: PMC7504216 DOI: 10.3390/molecules25173896] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Eight compounds were isolated from the roots of Glycyrrhiza uralensis and tested for cholinesterase (ChE) and monoamine oxidase (MAO) inhibitory activities. The coumarin glycyrol (GC) effectively inhibited butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) with IC50 values of 7.22 and 14.77 µM, respectively, and also moderately inhibited MAO-B (29.48 µM). Six of the other seven compounds only weakly inhibited AChE and BChE, whereas liquiritin apioside moderately inhibited AChE (IC50 = 36.68 µM). Liquiritigenin (LG) potently inhibited MAO-B (IC50 = 0.098 µM) and MAO-A (IC50 = 0.27 µM), and liquiritin, a glycoside of LG, weakly inhibited MAO-B (>40 µM). GC was a reversible, noncompetitive inhibitor of BChE with a Ki value of 4.47 µM, and LG was a reversible competitive inhibitor of MAO-B with a Ki value of 0.024 µM. Docking simulations showed that the binding affinity of GC for BChE (−7.8 kcal/mol) was greater than its affinity for AChE (−7.1 kcal/mol), and suggested that GC interacted with BChE at Thr284 and Val288 by hydrogen bonds (distances: 2.42 and 1.92 Å, respectively) beyond the ligand binding site of BChE, but that GC did not form hydrogen bond with AChE. The binding affinity of LG for MAO-B (−8.8 kcal/mol) was greater than its affinity for MAO-A (−7.9 kcal/mol). These findings suggest GC and LG should be considered promising compounds for the treatment of Alzheimer’s disease with multi-targeting activities.
Collapse
|