1
|
Ngah WZW, Ahmad HF, Ankasha SJ, Makpol S, Tooyama I. Dietary Strategies to Mitigate Alzheimer's Disease: Insights into Antioxidant Vitamin Intake and Supplementation with Microbiota-Gut-Brain Axis Cross-Talk. Antioxidants (Basel) 2024; 13:1504. [PMID: 39765832 PMCID: PMC11673287 DOI: 10.3390/antiox13121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease (AD), which is characterized by deterioration in cognitive function and neuronal death, is the most prevalent age-related progressive neurodegenerative disease. Clinical and experimental research has revealed that gut microbiota dysbiosis may be present in AD patients. The changed gut microbiota affects brain function and behavior through several mechanisms, including tau phosphorylation and increased amyloid deposits, neuroinflammation, metabolic abnormalities, and persistent oxidative stress. The lack of effective treatments to halt or reverse the progression of this disease has prompted a search for non-pharmaceutical tools. Modulation of the gut microbiota may be a promising strategy in this regard. This review aims to determine whether specific dietary interventions, particularly antioxidant vitamins, either obtained from the diet or as supplements, may support the formation of beneficial microbiota in order to prevent AD development by contributing to the systemic reduction of chronic inflammation or by acting locally in the gut. Understanding their roles would be beneficial as it may have the potential to be used as a future therapy option for AD patients.
Collapse
Affiliation(s)
- Wan Zurinah Wan Ngah
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Hajar Fauzan Ahmad
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Pahang, Malaysia;
| | - Sheril June Ankasha
- Unisza Science and Medicine Foundation Centre, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia;
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ikuo Tooyama
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| |
Collapse
|
2
|
Kim J, Lee H, Kim HM, Kim JH, Byun S, Lee S, Kim CY, Ryou C. Isolation of Anti-Prion Compounds from Curcuma phaeocaulis Valeton Extract. Molecules 2024; 29:4034. [PMID: 39274884 PMCID: PMC11397528 DOI: 10.3390/molecules29174034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Prion diseases, known as a group of fatal neurodegenerative disorders caused by prions, remain incurable despite extensive research efforts. In a recent study, crude extract from Curcuma phaeocaulis Valeton (Cp) showed promising anti-prion efficacy in in vitro and in vivo models, prompting further investigation into their active compounds. We endeavored to identify the chemical constituents of the Cp extract and discover potential anti-prion agents. With the use of centrifugal partition chromatography (CPC), major constituents were isolated from the n-hexane (HX) fraction of the extract in a single step. Spectroscopic analysis confirmed the presence of curcumenone, curcumenol, and furanodienone. Subsequent efficacy testing in a cell culture model of prion disease identified curcumenol and furanodienone as active compounds. This study underscores the potential of natural products in the search for effective treatments against prion diseases.
Collapse
Affiliation(s)
- Jaehyeon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Hakmin Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Hye Mi Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Ji Hoon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Sanghoon Byun
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Sungeun Lee
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Chul Young Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan 15588, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Zheng W, Zhou H, Fu Z, Feng L, Wen D, Liang X, Cao L. Integration of 16 S rRNA gene sequencing, metabonomics and metagenome analysis to investigate the mechanism of Sparganium stoloniferum-Curcuma phaeocaulis in treating of endometriosis in rats. J Pharm Biomed Anal 2024; 241:115970. [PMID: 38277707 DOI: 10.1016/j.jpba.2024.115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Endometriosis is a gynecological disease that causes severe chronic pelvic pain and infertility in women. The therapeutic efficacy of the traditional herbal combination of Sparganium stoloniferum-Curcuma phaeocaulis (Sangleng-Ezhu, SL-EZ) in the treatment of endometriosis has been established. However, the precise mechanism by which this treatment exerts its effects remains elusive. METHODS To gain further insights, UPLC-MS/MS was employed to identify the primary chemical constituents of SL-EZ in serum. Additionally, network pharmacology was utilized to analyze the active ingredients and their corresponding targets. Furthermore, the impact of SL-EZ on ectopic endometrial growth in endometrial implants was assessed using a rat model. The therapeutic mechanism of SL-EZ in rats with endometriosis was further investigated through the application of 16 S rRNA gene sequencing, metagenomic sequencing, and metabolomics. RESULTS The primary compounds in serum were zederone, p-coumaric acid, dehydrocostus lactone, curdione, curcumol. The growth of ectopic lesions in a rat model was effectively inhibited by SL-EZ. In comparison to the control group, the endometriotic rats exhibited a decrease in α-diversity of the gut microbiota, an increase in the Firmicutes/Bacteroidetes ratio, and a reduction in the abundance of Ruminococcaceae. Following SL-EZ intervention, the potential probiotic strains Lactobacillus gasseri and Lactobacillus johnsonii were able to restore the intestinal microenvironment at the species level. The altered metabolites were significantly correlated with Verrucomicrobia, Proteobacteria, and Bacteroidetes. The metabolomic analysis demonstrated significant alterations in intestinal metabolites. And SL-EZ intervention also exerted regulatory effects on various metabolic pathways in gut microbiota, including aminoacyl-tRNA biosynthesis, monobactam biosynthesis, cyanoamino acid metabolism, glycine, serine and threonine metabolism, plant secondary metabolite biosynthesis, and amino acid biosynthesis. CONCLUSION The identification of novel treatment formulations for endometriosis was achieved through the utilization of network pharmacology and gut microbiota analyses. Our findings revealed simultaneous alterations in the microbiota within the rat model of endometriosis. The therapeutic efficacy of SL-EZ in treating endometriosis is attributed to its ability to restore the gut microbiota and regulate metabolism. This investigation offers valuable insights into the therapeutic mechanisms of traditional Chinese medicine (TCM) for endometriosis.
Collapse
Affiliation(s)
- Weilin Zheng
- Department of traditional Chinese medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hong Zhou
- National Clinical Research Center for Kidney Disease, Nanfang Hospital, Guangzhou, China
| | - Zhiyi Fu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China
| | - Luyao Feng
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Danting Wen
- Department of gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Lixing Cao
- Department of gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Cui T, Li BY, Liu F, Xiong L. Research Progress on Sesquiterpenoids of Curcumae Rhizoma and Their Pharmacological Effects. Biomolecules 2024; 14:387. [PMID: 38672405 PMCID: PMC11048675 DOI: 10.3390/biom14040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumae Rhizoma, a traditional Chinese medicine with a wide range of pharmacological activities, is obtained from the dried rhizomes of Curcuma phaeocaulis VaL., Curcuma kwangsiensis S. G. Lee et C. F. Liang, and Curcuma wenyujin Y. H. Chen et C. Ling. Sesquiterpenoids and curcuminoids are found to be the main constituents of Curcumae Rhizoma. Sesquiterpenoids are composed of three isoprene units and are susceptible to complex transformations, such as cyclization, rearrangement, and oxidation. They are the most structurally diverse class of plant-based natural products with a wide range of biological activities and are widely found in nature. In recent years, scholars have conducted abundant studies on the structures and pharmacological properties of components of Curcumae Rhizoma. This article elucidates the chemical structures, medicinal properties, and biological properties of the sesquiterpenoids (a total of 274 compounds) isolated from Curcumae Rhizoma. We summarized extraction and isolation methods for sesquiterpenoids, established a chemical component library of sesquiterpenoids in Curcumae Rhizoma, and analyzed structural variances among sesquiterpenoids sourced from Curcumae Rhizoma of diverse botanical origins. Furthermore, our investigation reveals a diverse array of sesquiterpenoid types, encompassing guaiane-type, germacrane-type, eudesmane-type, elemane-type, cadinane-type, carane-type, bisabolane-type, humulane-type, and other types, emphasizing the relationship between structural diversity and activity. We hope to provide a valuable reference for further research and exploitation and pave the way for the development of new drugs derived from medicinal plants.
Collapse
Affiliation(s)
- Ting Cui
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo-Yu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.C.); (B.-Y.L.)
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
5
|
Han J, Fan Y, Wu P, Huang Z, Li X, Zhao L, Ji Y, Zhu M. Parkinson's Disease Dementia: Synergistic Effects of Alpha-Synuclein, Tau, Beta-Amyloid, and Iron. Front Aging Neurosci 2021; 13:743754. [PMID: 34707492 PMCID: PMC8542689 DOI: 10.3389/fnagi.2021.743754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease dementia (PDD) is a common complication of Parkinson’s disease that seriously affects patients’ health and quality of life. At present, the process and pathological mechanisms of PDD remain controversial, which hinders the development of treatments. An increasing number of clinical studies have shown that alpha-synuclein (α-syn), tau, beta-amyloid (Aβ), and iron are closely associated with PDD severity. Thus, we inferred the vicious cycle that causes oxidative stress (OS), due to the synergistic effects of α-syn, tau, Aβ, and, iron, and which plays a pivotal role in the mechanism underlying PDD. First, iron-mediated reactive oxygen species (ROS) production can lead to neuronal protein accumulation (e.g., α-syn andAβ) and cytotoxicity. In addition, regulation of post-translational modification of α-syn by iron affects the aggregation or oligomer formation of α-syn. Iron promotes tau aggregation and neurofibrillary tangles (NFTs) formation. High levels of iron, α-syn, Aβ, tau, and NFTs can cause severe OS and neuroinflammation, which lead to cell death. Then, the increasing formation of α-syn, Aβ, and NFTs further increase iron levels, which promotes the spread of α-syn and Aβ in the central and peripheral nervous systems. Finally, iron-induced neurotoxicity promotes the activation of glycogen synthase kinase 3β (GSK3β) related pathways in the synaptic terminals, which in turn play an important role in the pathological synergistic effects of α-syn, tau and Aβ. Thus, as the central factor regulating this vicious cycle, GSK3β is a potential target for the prevention and treatment of PDD; this is worthy of future study.
Collapse
Affiliation(s)
- Jiajun Han
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yaohua Fan
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Peipei Wu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinrong Li
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijun Zhao
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yichun Ji
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|